首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbonyl substitution reactions of [μ-(SCH2)2CHC6H5]Fe2(CO)6 with bidentate phosphine ligands, cis-1,2-bis(diphenylphosphine)ethylene (cis-dppv) and N,N-bis(diphenylphosphine)propylamine [(Ph2P)2N-Pr-n], yielded an asymmetrically substituted chelated complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(k 2-dppv) and a symmetrically substituted bridging complex [(μ-SCH2)2CHC6H5]Fe2(CO)4[μ-(PPh2)2N-Pr-n] under different reaction conditions. Both complexes were fully characterized by spectroscopic methods and by X-ray crystallography. Their electrochemical behaviors were observed by cyclic voltammetry, and the catalytic electrochemical reduction of protons from acetic or trifluoroacetic acid to give dihydrogen mediated by complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(k 2-dppv) was investigated.  相似文献   

3.
Two new carboxylate-containing polydentate ligands have been synthesized, the symmetric ligand 2,6-bis[N-(N-(carboxylmethyl)-N-((1-methylimidazol)methyl)amine)methyl]-4-methylphenolate (BCIMP) and the corresponding asymmetric ligand 2-(N-isopropyl-N-((1-aminomethyl)-4-methylphenol (ICIMP). The ligands have been used to prepare model complexes for the active site of the dinuclear nickel enzyme urease, viz. [Ni(2)(BCIMP)Ac(2)](-) (6), [Ni(2)(BCIMP)(Ph(2)Ac)(2)](-) (7), [Ni(2)(ICIMP)(Ph(2)Ac)(2)] (14), [Ni(4)(ICIMP)(2)(Ph(2)Ac)(2)][ClO(4)](2) (15), [Ni(4)(ICIMP)(2)(Ph(2)Ac)(2)(DMF)(2)][ClO(4)](2) (16), and [Ni(4)(ICIMP)(2)(Ph(2)Ac)(2)(urea)(H(2)O)][ClO(4)](2) (17), where the latter complex contains urea coordinated in a unidentate fashion through the carbonyl oxygen. The N(2)O-N(2)O(2) donor set of ICIMP provides a good framework for the preparation of urease models, but in some cases tetranuclear nickel complexes are formed due to coordination of the carboxylate moiety of one dinickel-ICIMP unit to one or both of the nickels of a second Ni(2) unit. Reactivity and kinetics studies of 7 and 15 show that these model complexes catalyze hydrolysis of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) at basic pH. In this assay, complexes based on the asymmetric ligand ICIMP exhibit a significantly faster rate of hydrolysis than the corresponding BCIMP complexes. Magnetic measurements indicate that there are weak antiferromagnetic interactions between the nickel ions in complex 16.  相似文献   

4.
The reduction of ammonium pertechnetate with bis(diphenylphosphino)methane (dppm), and with diphenyl-2-pyridyl phosphine (Ph(2)Ppy), has been investigated. The neutral Tc(II) complex, trans-TcCl(2)(dppm)(2) (1), has been isolated from the reaction of (NH(4))[TcO(4)] with excess dppm in refluxing EtOH/HCl. Chemical oxidation with ferricinium hexafluorophosphate results in formation of the cationic Tc(III) analogue, trans-[TcCl(2)(dppm)(2)](PF(6)) (2). The dppm ligands adopt the chelating bonding mode in both complexes, resulting in strained four member metallocycles. With excess PhPpy, the reduction of (NH(4))[TcO(4)] in refluxing EtOH/HCl yields a complex with one chelating Ph(2)Ppy ligand and one unidentate Ph(2)Ppy ligand, mer-TcCl(3)(Ph(2)Ppy-P,N)(Ph(2)Ppy-P) (3). The cationic Tc(III) complexes, trans-[TcCl(2)(Ph(2)P(O)py-N,O)(2)](PF(6)) (4) and trans-[TcCl(2)(dppmO-P,O)(2)](PF(6)) (5) (Ph(2)P(O)py = diphenyl-2-pyridyl phosphine monoxide and dppmO = bis(diphenylphosphino)methane monoxide), have been isolated as byproducts from the reactions of (NH(4))[TcO(4)] with the corresponding phosphine. The products have been characterized in the solid state and in solution via a combination of single-crystal X-ray crystallography and spectroscopic techniques. The solution state spectroscopic results are consistent with the retention of the bonding modes revealed in the crystal structures.  相似文献   

5.
Addition of the amine–boranes H3B ? NH2tBu, H3B ? NHMe2 and H3B ? NH3 to the cationic ruthenium fragment [Ru(xantphos)(PPh3)(OH2)H][BArF4] ( 2 ; xantphos=4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene; BArF4=[B{3,5‐(CF3)2C6H3}4]?) affords the η1‐B? H bound amine–borane complexes [Ru(xantphos)(PPh3)(H3B ? NH2tBu)H][BArF4] ( 5 ), [Ru(xantphos)(PPh3)(H3B ? NHMe2)H][BArF4] ( 6 ) and [Ru(xantphos)(PPh3)(H3B ? NH3)H][BArF4] ( 7 ). The X‐ray crystal structures of 5 and 7 have been determined with [BArF4] and [BPh4] anions, respectively. Treatment of 2 with H3B ? PHPh2 resulted in quite different behaviour, with cleavage of the B? P interaction taking place to generate the structurally characterised bis‐secondary phosphine complex [Ru(xantphos)(PHPh2)2H][BPh4] ( 9 ). The xantphos complexes 2 , 5 and 9 proved to be poor precursors for the catalytic dehydrogenation of H3B ? NHMe2. While the dppf species (dppf=1,1′‐bis(diphenylphosphino)ferrocene) [Ru(dppf)(PPh3)HCl] ( 3 ) and [Ru(dppf)(η6‐C6H5PPh2)H][BArF4] ( 4 ) showed better, but still moderate activity, the agostic‐stabilised N‐heterocyclic carbene derivative [Ru(dppf)(ICy)HCl] ( 12 ; ICy=1,3‐dicyclohexylimidazol‐2‐ylidene) proved to be the most efficient catalyst with a turnover number of 76 h?1 at room temperature.  相似文献   

6.
The synthesis and characterisation of nonclassical ruthenium hydride complexes containing bidentate PP and tridentate PCP and PNP pincer-type ligands are described. The mononuclear and dinuclear ruthenium complexes presented have been synthesised in moderate to high yields by the direct hydrogenation route (one-pot synthesis) or in a two-step procedure. In both cases [Ru(cod)(metallyl)(2)] served as a readily available precursor. The influences of the coordination geometry and the ligand framework on the structure, binding, and chemical properties of the M--H(2) fragments were studied by X-ray crystal structure analysis, spectroscopic methods, and reactivity towards N(2), D(2), and deuterated solvents.  相似文献   

7.
8.
Twelve new copper(II) complexes in which N,N′-bis-(2-pyridylmethyl)-oxamidatocopper(II) or N,N′-bis(2-pyridylethyl)-oxamidatocopper(II) coordinates as a bidentate ligand have been isolated and characterized. These complexes have a structure bridged by the oxamide group (including two tetranuclear complexes formed by olation of two binuclear complexes, of. Fig. 1), and possess Cu? Cu interaction resulting in a sub-normal magnetic moment at room temperature. In one of them, [Cu2(PMoxd) (bipy)2] (NO3)2 (cf. Fig. 2), each copper(II) ion has a five-coordinated environment.  相似文献   

9.
Addition of four equivalents of t-butyldiallylphosphine 1a to a solution of one equivalent of [(COE)2IrCl]2 in CHCl3 at low temperature produced two isomers of thecomplex [t-Bu(C3H5)PCH2CH=CH)]IrHCl(COE)-[PtBu(C3H5)2] ( 2a ), which evolve at 40°C to [t-Bu(C3H5)PCH2CH=CH)]IrCl(C8H15)[PtBu(C3H5)2] ( 3a ), by a hydride transfer from iridium to the cyclooctene (COE) ligand. It is reasonable that the unsaturation at the iridium center is fulfilled by interactions with the allyl moieties of the phosphine that are not metalated. This has been demonstrated by bubbling CO into a solution of 3a in CHCl3 at room temperature to obtain the carbonyl complex [t-Bu(C3H5)-PCH2CH=CH)]Ir(CO)Cl(C8H15)[PtBu(C3H5)2] ( 4a ). Under the same conditions, the reaction of diisopropylamindiallylphosphine 1b and anisyldiallylphosphine 1c afforded a mixture of isomers 3b and 3c , respectively. These results show that diallylphosphines can be considered to be a new family of bidentate ligands. Finally, the reaction of these phosphines with [(COD)IrCl]2 (COD = 1,5 cyclooctadiene) shows the formation of tetracoordinated iridium (I) complexes IrCl(COD)(PR3), which are thermally stable. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:253–259, 1998  相似文献   

10.
Mono-, di- and triphosphine ligands anchored by a Si–C bond to the surface of silica have been synthesized. Complexes of Pd(II) and Pd(O) with these ligands have been obtained. On the basis of elemental analysis and UV spectroscopy, structures of the complexes formed are suggested. The catalytic properties of the above complexes in the selective hydrogenation of cyclopentadiene are compared.
-, - , Si–C . Pd(II) Pd(O) . - . .
  相似文献   

11.
Mixed-valence triiron complexes Fe(3)(CO)(7-x)(PPh(3))(x)(μ-edt)(2) (x = 0-2) have been prepared and are shown to act as proton reduction catalysts. Catalysis takes place via an ECEC mechanism with a reduced overpotential of ca. 0.45 V for Fe(3)(CO)(7)(μ-edt)(2) as compared to the corresponding diiron complex.  相似文献   

12.
A series of potentially bidentate benzimidazolyl ligands of the type (Bim)CH2D (where Bim = benzimidazolyl and D = NMe2L1, NEt2L2, NPri2L3, OMe L4 and SMe L5) has been reacted with Ti(NMe2)4 to give five- and six-coordinate Ti(IV) complexes of the type [(Bim)CH2D]Ti(NMe2)3 and [(Bim)CH2D]2Ti(NMe2)2, respectively. The X-ray structures of [(Bim)CH2OMe]Ti(NMe2)3, [(Bim)CH2NMe2]2Ti(NMe2)2 and [(Bim)CH2OMe)]2Ti(NMe2)2 are reported along with an evaluation of their behavior in ethylene polymerization.  相似文献   

13.
双膦(P-P)和1, 2-双齿巯基(S-X)混合与MCl2(M=Co, Ni)反应,得到通式为M(S-X)(P-P)的产物。晶体结构测定表明, 配合物Co(bdt)(dppe)(1), Ni(tdt)(dppm)(2)和Ni(tsal)(dppe)(3)中的金属均为SXP2配位的四方平面构型, S, X, P原子分别来自二种双齿配体, 各形成四、五或六元螯合配位环。文中总结了结构特征, 探讨了基元配合物稳定的原因。  相似文献   

14.
双膦(P-P)和1, 2-双齿巯基(S-X)混合与MCl2(M=Co, Ni)反应,得到通式为M(S-X)(P-P)的产物。晶体结构测定表明, 配合物Co(bdt)(dppe)(1), Ni(tdt)(dppm)(2)和Ni(tsal)(dppe)(3)中的金属均为SXP2配位的四方平面构型, S, X, P原子分别来自二种双齿配体, 各形成四、五或六元螯合配位环。文中总结了结构特征, 探讨了基元配合物稳定的原因。  相似文献   

15.
The early-late heterometallic complexes [TiCp((OCH2)2Py)(μ-O)M(COD)] (M = Rh, Ir) behave as four-electron donor ligands yielding the polynuclear cationic complexes [TiCp(OCH2)2 Py(μ-O){M(COD)}2]OTf (M = Rh (1), Ir (2)). The molecular structure of complex 1 has been established through an X-ray diffraction study.  相似文献   

16.
Novel Pd(II) mixed N,S-heterocyclic carbene (NSHC)-phosphine complexes of the general formula [PdBr(2)(NSHC)(PR(3))] were obtained from bridge cleavage of dinuclear NSHC complexes of type [PdBr(2)(NSHC)](2) [NSHC = 3-benzylbenzothiazolin-2-ylidene and 3-propylbenzothiazolin-2-ylidene] with triphenylphosphine, tricyclohexylphosphine and 2-diphenylphosphanyl-pyridine. All complexes have been fully characterized by (1)H and (13)C NMR spectroscopy, ESI mass spectrometry and elemental analysis. The X-ray crystal structures of complexes 3-8 are reported. The complexes exhibit moderate to good catalytic activity in the Suzuki-Miyaura coupling reaction of aryl bromides and chlorides.  相似文献   

17.
Template-assisted self-assembly of ditopic catechol phosphines creates complexes containing a chelating diphosphine ligand, which display hemilabile coordination properties with prospects for applications in catalysis.  相似文献   

18.
The rhodium(I) complexes (Ph3P)2Rh(LL′), in which LL′ is an unsaturated chelate coordinating via L = S and L′ = N, O, P or S, have been prepared from RhCl(PPh3)3 by two routes.Direct substitution of one Ph3P and Cl? by the chelate anion gives (Ph3P)2Rh[Ph2PC(S)S] (L = S, L′ = P). Oxidative addition of an NH bond followed by reductive elimination of HCl results in (Ph3P)2Rh[Me2NC(S)NC(S)NMe2] (L = S, L′ = S), (Ph3P)2Rh[PhNC(S)NMe2] (L = S, L′ = N), (Ph3P)2Rh[Ph2PC(S)NPh) (L = S, L′ = P) and (Ph3P)2Rh[Ph2P(O)C(S)NPh] (L = S, L′ = O).Reaction of the complexes (Ph3P)2Rh(LL′) with CO gives (CO)(Ph3P)Rh(LL′) with CO trans to the chelate donor atom with the lowest trans-influence. Pt(PPh3)4 reacts with Me2NC(S)N(H)C(S)NMe2 and HN(Ph)C(S)PPh2, respectively, to give H(Ph3P)Pt[Me2NC(S)NC(S)NMe2] (L = S, L′ = S) and H(Ph3P)Pt[Ph2PC(S)NPh] (L = S, L′ = P).The coordinating atoms and their configurations have been assigned by IR 31P NMR and 1H NMR. Some trend in IR and 31P NMR paramaters are discussed.  相似文献   

19.
The non-symmetric phosphorus ylides and their Pd(II) complexes have been synthesized as potential antioxidant and antibacterial compounds and their structures were elucidated using a variety of physicochemical techniques. The reaction of 1 equiv non-symmetric phosphorus ylides, Ph2PCH2PPh2C(H)C(O)PhX (X = Br (Y1), Cl (Y2), NO2 (Y3), OCH3 (Y4)) with [Pd(dppe)Cl2] (M1), followed by treatment with 2 equiv AgOTf led to monomeric chelate complexes, [(dppe)Pd(Ph2PCH2PPh2C(H)C(O)PhX)] (OSO2CF3)2 (X = Br (C1), Cl (C2), NO2 (C3), OCH3 (C4)), which contain a five-membered P,P chelate ring in one side and a five-membered P,C chelate ring in the other side. Palladium ion complexes were synthesized and investigated by cyclic voltammetry, FT-IR, UV–visible, multinuclear (1H, 31P and 19F) NMR, thermal analysis and ESI-mass spectroscopic studies. Some complexes and ligands have been studied by powder XRD and single crystal X-ray diffraction techniques. FT-IR and 31P NMR studies revealed that the ylides Y are coordinated to the metal ions via the terminal phosphorus (Pc) of the ylides and methene group (CH). The proposed coordination geometry around the Pd atom in these complexes is defined as slightly distorted square planar by UV-Visible and DFT studies. Thermal stability of all complexes was also shown by TG/DTG methods. Furthermore, the electrochemical behavior of the complexes was investigated by cyclic voltammetry. The results indicate that all complexes are successfully synthesized from the initial ligands. All complexes were analyzed for their antioxidant properties by DPPH free radical scavenging assay. In addition, the antibacterial effects of the hexane-solved complexes were investigated by disc diffusion method against four Gram positive and negative bacteria. All complexes represented antibacterial activity against bacteria tested especially on Gram positive ones. A theoretical study on the structure, 1H and 31P NMR chemical shifts and the interaction energy between the Pd2+ ion and ligands dppe and ylide Y is also reported.  相似文献   

20.
Hydride complex RuH2(PFFP)2 (1) [PFFP = (CF3CH2O)2PN(CH3)N(CH3)P(OCH2CF3)2] was prepared by allowing the compound RuCl4(bpy) · H2O (bpy = 1,2-bipyridine) to react first with the phosphite PFFP and then with NaBH4. Chloro-complex RuCl2(PFFP)2 (2) was also prepared, either by reacting RuCl4(bpy) · H2O with PFFP and zinc dust or by substituting triphenylphosphine with PFFP in the precursor complex RuCl2(PPh3)3. Hydride derivative RuH2(POOP)2 (3) (POOP = Ph2POCH2CH2OPPh2) was prepared by reacting compound RuCl3(AsPh3)2(CH3OH) first with the phosphite POOP and then with NaBH4. Depending on experimental conditions, treatment of carbonylated solutions of RuCl3 · 3H2O with POOP yields either the cis- or trans-RuCl2(CO)(PHPh2)(POOP) (4) derivative. Reaction of both cis- and trans-4 with LiAlH4 in thf affords dihydride complex RuH2(CO)(PHPh2)(POOP) (5). Chloro-complex all-trans-RuCl2(CO)2(PPh2OMe)2 (6) was obtained by reacting carbonylated solutions of RuCl3 · 3H2O in methanol with POOP. Treatment of chloro-complex 6 with NaBH4 in ethanol yielded hydride derivative all-trans-RuH2(CO)2(PPh2OMe)2 (7). The complexes were characterised spectroscopically and the X-ray crystal structures of complexes 1, 3, cis-4 and 6 were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号