首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The color-forming reactions of copper(II) with nine triphenylmethane dyes in the presence of cetyltrimethylammonium bromide and cetylpyridinium chloride (CPC) have been studied. Spectral characteristics of the complexes with eriochrome cyanine R (ECR), chromazurol S (CAS), bromopyrogallol red, and pyrogallolsulfonephthalein are presented. The CAS complexes have the highest molar absorptivities, but the Cu—ECR—CPC system is the only one with an insignificant reagent blank. In the presence of excess of ECR and CPC, a blue complex is formed at pH 7.0–7.8 with. ? = 7.2 × 104 l mol-1 cm-1 at 593 nm, and the ratio of Cu:ECR:CPC is l:4:q, where q ? 2. Fluoride was used as a masking agent, but most cations tested interfered in the determination of copper with ECR and CPC.  相似文献   

2.
The optimum conditions have been found for the formation of the ternary complexes of iron(III) with Chrome Azurol S (CAS), Eriochrome Cyanine R, and Pyrocatechol Violet in the presence of cetyltrimethylammonium (CTA), cetylpyridinium, or tetradecyldimethyl-benzylammonium ions. The pH range of the complex formation is limited mainly by the pertinent hydrolysis constants of the metal ions. The maximum absorbances were obtained for excess R and cationic surfactants, ensuring the formation of complexes with the highest R:Fe molar ratio. The method based on the Fe-CAS-CTA system (ε = 1.32 × 105 liter mol−1 cm−1 at 628 nm) is most sensitive and is recommended for the spectrophotometric determination of iron.  相似文献   

3.
A new sensitive spectrophotometric method for titanium determination, based on the ternary Ti-Chrome Azurol S (CAS)-cetyltrimethylammonium (CTA) system, was developed. The molar absorptivity is 7.3 × 104 liters mol?1 cm?1 at λmax = 565 nm. The maximum absorbance is attained in 5 min at pH 1.3 ± 0.1 and at CAS and CTA concentrations of 1.5 × 10?4 and 5 × 10?4M, respectively. Zirconium and hafnium in the presence of ascorbic acid are the only interfering metals. Hydrogen peroxide and EDTA interfere with the titanium determination as well. The proposed method was applied to the determination of titanium (about 1 × 10?2%) in aluminum metal. The method, based on the Ti-Eriochrome Cyanine R-CTA system, is similar to the above method. Among other cationic surfactants, cetylpyridinium chloride (CP) and zephiramine were examined. The color effects when using CP, and especially zephiramine, are worse than in the presence of CTA.  相似文献   

4.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

5.
The tetrahydrazide of ethylenediamine tetraacetic acid (NH2NH)4-EDTA was synthesized from the EDTA ester and hydrazine hydrate in ethanolic solution, the resulting (NH2NH)4-EDTA being recrystallized in 60% ethanol. When the spectrophotometric study of the iron(III) (NH2NH)4-EDTA complex in aqueous solution was made two absorption maxima at 530 and 450 nm at pH 4.5 and 11.0, respectively, were found. Beer's law is obeyed in the range 1.0–20.0 μg Fe(III) ml?1 at 530 nm and pH 4.5 and 0.5–12.0 μg Fe(III) ml?1 at 450 nm and pH 11.0, the molar absorptivities being 1.95 × 103 1 mol?1 cm?1 at 530 nm and 3.35 × 103 1 mol?1 cm?1 at 450 nm, respectively. The Ringbom optimal interval falls between about 3 and 18 μg Fe(III) ml?1 at 530 nm and about 2–14 μg Fe(III) ml?1 at 450 nm. The reaction between the metal and the ligand was also investigated. The method has been successfully applied to the determination of iron in talcs.  相似文献   

6.
Iron(II) in the presence of quaternary ammonium salt reacts with bromopyrogallol red (BPR) and pyrogallol red (PR) to form a ternary complex. The ternary complex Fe(II)-BPR-TDTA is suitable for the determination of trace amounts of iron. The complex has an absorbance maximum at 635 nm with molar absorptivity 5.6 × 104 liters mol?1 cm?1, in which the molar ratio of iron(II) to BPR is 1:3. Beer's law is obeyed over the range 0.08–0.5 μg/ml of iron. Masking agents allow most interferences to be suppressed.  相似文献   

7.
The composition, formation constants, and molar absorptivities of the chelates of zirconium ion wtih xylenol orange and semi-xylenol orange are investigated spectrophotometrically in strong acid medium at ionic strength 3.0 (NaClO4 and HClO4). The data obtained were processed with a newly-constructed computer program and with LETAGROP/SPEFO. In the zirconium—xylenol orange system, Zr · H3 L, Zr· H4L, and Zr2 · L are present with logarithmic overall formation constants of 37.80, 38.68, 43.47, and molar absorptivities of 3.10 × 104 (485 nm), 5.98 × 104 (528 nm), 9.50 × 104 (551 nm) I mol-1 cm-1, respectively. The chelates Zr · L and Zr · HL were found in the zirconium—semi-xylenol orange system with logarithmic overall formation constants of 26.25 and 27.56, and molar absorptivities of 5.70 × 104 (532 nm) and 8.30 × 104 (535 nm) 1 mol-1 cm-1, respectively. Semi-xylenol orange is more sensitive and reliable than xylenol orange as a spectrophotometric reagent for zirconium.  相似文献   

8.
《Analytical letters》2012,45(15):3097-3111
Abstract

The complex formation reaction between iron(III) and 4-(2-pyridylazo) resorcinol(PAR) in the presence of various water soluble surfactants((N-hexadecylpyridinium chloride (HPC), poly(vinylalcohol)(PVA), sodium dodecylsulfate(SDS), sodium N-lauroylsarcosine(SL)) alone or in combination at weakly acidic media was systematically investigated. An improved and more sensitive spectrophotometric method for the determination of iron was proposed by zero-order and third-derivative spectrophotometry using the PAR-iron(III)-HPC ternary complex system at about pH 5.2. The calibration curve was rectilinear in the ranges of 0 – 15.0 μg iron(III) in a final 10-ml on the zero-order spectrophotometry. Also, upon the third-derivative spectrophotometry, Beer's law was obeyed in the range of 0 – 8.0 μg iron(III)/10 ml by measuring the distance between the absorbance peak(λ1 = 527 nm) and the valley (λ2 = 560 nm). The apparent molar absorptivity was 4.8 × 104 1 mol?1 cm?1 in zero-order spectrophotometry, and 1.36 × 105 mol?1 cm?1 in third-derivative spectrophotometry. The effect of foreign ions was decreased within ½ – ¼-fold in comparison with the method in the presence of PVA without HPC. Especially, the third-derivative spectrophotometric method was sensitive and selective, and made possible to assay mixed sample solution containing iron(III) and copper(II), etc.  相似文献   

9.
《Analytical letters》2012,45(11):2011-2016
Abstract

A new spectrophotometric determination of cobalt with 2-hydroxy-1-naphthaldehyde guanylhydrazone in acid medium is described. The method is developed on the basis of a yellow cobalt (III) complex (molar absorptivity 1.32×10?4 L.mol?1.cm?1 at 416 nm, stoichiometry 2:1). The method was applied to the determination of cobalt in vitamin preparations, steel and high-purity iron.  相似文献   

10.
A simple and sensitive method for spectrophotometric determination of lanthanum has been developed. At pH 9.6, in presence of 50% ethanol, lanthanum reacts with 1-(-2-pyridylazo)-2-naphthol (PAN) to form a red complex which has two absorption maxima, at 545 and 510 nm. The molar absorptivity at 545 nm is 0.55 × 104 liters · mol?1 cm?1. On the other hand, lanthanum reacts with PAN in pure ethanol to form a red complex at 530 nm, with high molar absorptivity (8 × 104 liters · mol?1 cm?1).  相似文献   

11.
 A very sensitive and selective method for the determination of trace amounts of iron has been developed, based on the reduction of Fe(III) to Fe(II) by ascorbic acid, followed by chromogenic chelation of Fe(II) with ferrozine. The complex Fe(II)-ferrozine is easily sorbed on a dextran-type anion-exchange gel packed in a 1 mm cell, and the absorbance of the gel is measured directly at 569 and 800 nm. The extended linear range of the determination is 0.5–10 ng ml-1 of iron (apparent molar absorptivity=4.4×107 l mol-1 cm-1) and the precision (RSD) 1.3% for a concentration of 5 ng ml-1 of iron (n=10). The detection limit for a sample volume of 1000 ml, using 0.040 g of anion-exchanger, corresponds to 0.12 ng ml-1. The method has been successfully applied to the determination of iron in natural and waste waters, wine, soil extract and previously digested vegetal tissues, drugs and human hair. Received: 20 November 1995/Revised: 23 January 1996/Accepted: 26 January 1996  相似文献   

12.
Preconcentration, speciation and separation with solvent extraction of Fe(III) from samples of different origin, using methyl isobutyl ketone (MIBK) as a solvent and the sodium salt of 2-carboethoxy-1,3-indandione (CEIDNa) as a complexing agent for Fe(III), were studied. CEIDNa reacts with Fe(III) in the pH range 1.5–3.5 to produce a red colored complex of Fe(III)–CEIDNa (1:3 molar ratio) soluble in MIBK. The investigation includes a study of the characteristics that are essential for solvent extraction, spectrophotometric and flame atomic absorption spectrometric determination (AAS) of iron. A highly sensitive, selective and rapid spectrometric method is described for the trace analysis of iron(III) by CEIDNa. The complex formed obeys Beer's law from 0.06 to 1.8 mg l−1 with an optimum range. A single step extraction was efficiently used with a distribution ratio (D)=103.6. The extracted red colored (1:3) Fe–CEIDNa was measured spectrophotometrically at 500 nm with a molar absorptivity of 1.2×104 l mol−1 cm−1. In addition, the organic phase was directly aspirated to the flame for AAS determination and the signals related to Fe(III) concentration were recorded at 243.3 nm. The complexation of iron(III) with CEIDNa allows the separation of the analyte from alkali, alkaline earth and other elements, which are not complexed. The proposed preconcentration procedure was applied successfully to the determination of trace Fe(III) in soil, milk and natural water samples.  相似文献   

13.
The simultaneous determination of iron(III) and titanium(IV) with diantipyrinylmethane (DAPM) based on dual-wavelength spectrophotometry is described. The absorbances at 388 nm, 470, and 514.9 (A388, A470, A514.9, respectively) are measured and a ratio k (= A388/A514.9) of 3.64 is introduced to allow simultaneous determinations of iron and titanium. The apparent molar absorptivities obtained by using the differences in absorbance, A388—A514.9, for titanium and A470 × k — A388 for iron, are 1.41 × 104 and 1.13 × 104 1 mol?1 cm?1, respectively. The calibration graphs are linear up to 20 mg 1?1 iron(III) oxide and 5 mg 1?1 titanium(IV) oxide. The proposed method was applied successfully to the determination of iron and titanium in silicate rocks. The protonation equilibria of DAPM were also studied; Ka1 and Ka2 are estimated as 101.10 and 100.75, respectively.  相似文献   

14.
Manganese(II) (0.04–2 μmol) is extracted into chloroform from an aqueous phase at pH 6.5–9.0, containing a large excess of (n-butyl) xanthate and measured spectrophotometrically at 457 nm. The apparent molar absorptivity is 5.5 × 103 dm3 mol-1 cm-1. The extractability of the manganese complexes decreases in the order n-butyl = benzyl- ? n-propyl- ? ethyl- ? methyl-xanthate. Interfering ions can be removed by a preliminary extraction with ethylxanthate. Ni, Co, Zn, Cd, Pb, Hg(II), Fe(III), As(III), Ce(III), Se(IV), V(V), Mo(VI), and the alkali and alkaline earth metals do not interfere.  相似文献   

15.
2,2′-Dihydroxybenzophenone thiosemicarbazone forms complexes with Cu(II) (λmax = 385 nm, ? = 8.60 × 103 liter · mol?1 · cm?1); Ni(II) (λmax = 380 nm, ? = 15.4 × 103 liter · mol?1 · cm?1); Co(II) (λmax = 380 nm, ? = 12.3 × 103 liter · mol? · cm?1); and Fe(III) (λmax = 365 nm, ? = 7.9 × 103 liter · mol?1 · cm?1) and have been applied to the analysis of these metal ions in binary, ternary, and quaternary mixtures. The determination procedures are based exclusively on the different pH values of the formation complexes, hence the extraction step is not necessary.  相似文献   

16.
Americium(III) can be quantitatively extracted with 1 M diisoamylsulphoxide in Solvesso-100 from aqueous 0.02 M HNO3—2.5 Al(NO3)3 solutions and, after dilution of the extract with ethanol and nitric acid, determined in the organic phase with arsenazo-III. The apparent molar absorptivity is 1.58 × 105 l mol-1 cm-1 at 652 nm. The system obeys Beer's law within the range 0.1–1.6 μg Am ml-1; 0.11 μg Am ml-1 is determined with a reproducibility better than ±2%. Relatively large amounts of Ca(II), Cr(III), Fe (III), U(VI), Cl-, NO2-, NO3- and F- are tolerated. Interferences of Ce(IV), Pu(IV) and Th(IV) are eliminated by prior extraction with 2-thenoyltrifluoroacetone; only europium(III) interferes appreciably. Colour development is almost instantaneous and absorbances are virtually constant for 12 h.  相似文献   

17.
 Squaric acid (1,2-dihydroxy-3,4-diketo-cyclobutene) is used in a specific reaction with Fe(III) for the spectrophotometric determination of Fe(III) and total iron content. The optimization of the experimental parameters leads to the establishment of a simple, fast and accurate analytical method. The analytical procedure includes mixing ammonium squarate (40 mM), prepared in a phthalate buffer solution of pH 2.7, with the sample and measuring the absorbance at 515 nm. The molar absorptivity of the colored product is 3.95×103 L·mol−1·cm−1, at 515 nm. Calibration graphs for Fe(III) are rectilinear for 0.5–20 mgL−1, with a detection limit of 0.3 mgL−1 and r.s.d. not exceeding 2.5%, for five replicates of a 3.0 mgL−1 standard solution. The method has been successfully applied to the determination of iron (III) and the total iron content after quantitative oxidation of iron (II). The results for several analyzed samples when compared with those acquired by using the FAAS technique, were found to be in satisfactory agreement. Author for correspondence: University of Ioannina, Department of Chemistry, Laboratory of Analytical Chemistry, Ioannina 451 10, Greece. E-mail: panavelt@cc.uoi.gr Received July 27, 2002; accepted December 20, 2002 Published online April 11, 2003  相似文献   

18.
A simple, rapid and accurate method for the spectrophotometric determination of chloride in non-polar media is described. The method is based on the well-known reaction of mercury(II) thiocyanate with chloride to release thiocyanate, which then reacts with iron(III). The optimum concentrations of reagents for the determination of chloride in 2,2,4-trimethylpentane (iso-octane) and cyclohexane are reported. The molar absorptivity of the complex at 505 nm is 5120 ± 200 dm3 mol?1 cm?1 for iso-octane and 5340 ± 340 dm3 mol?1 cm?1 for cyclohexane. Beer's Law is obeyed in the range 2 × 10?7–2 × 10?5 mol dm?3 (0.01–1 mg l?1) chloride.  相似文献   

19.
A simple rapid method is proposed for the determination of rhenium (as perrhenate) in which the brown-violet complex produced is measured at 546 nm. The system obeys Beer's law in the range 0.7–14.0 μg Re ml-1; the molar absorptivity is 1.51 × 104 l mol-1 cm-1 in ethanol and 1.64 × 104 l mol-1 cm-1 for the complex extracted into methyl isobutyl ketone. Molybdenum (100-fold), tungsten (40-fold), copper (10-fold), and palladium (10-fold) are tolerable. Reactions of other metal ions such as Cu(II), Ni(II), Co(II) and Fe(II) with this ligand and reactions of perrhenate with analogous reagents are discussed.  相似文献   

20.
A new simple and sensitive spectrophotometric method for the determination of chromium(VI) is established. It relies upon the oxidation of iron(II) with the titled ion, in acidic medium, to form iron(III) which is complexed with tiron to form a stable blue color with maximum absorption at 650 nm. Adherence to Beer's law is observed in the range 10–100 μg of chromium(VI) per 25 ml, with a molar absorptivity of 5.6 × 103 liters mol?1 cm?1, sensitivity index of 0.0093 μg cm?1, relative error of ?5.0 to +0.3%, and relative standard deviation of 0.3–4.0%, depending on the concentration level. Furthermore, the reaction needs neither temperature control nor an extraction step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号