首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2006,18(6):573-578
The electroanalytical detection of trace mercury(II) at gold ultra‐microelectrode arrays is reported. The arrays consist of 256 gold microelectrodes of 5 μm in diameter in cubic arrangements which are separated from their nearest neighbor by 100 μm. The array was utilized in nitric acid using linear sweep voltammetry where a linear response from mercury additions over the range 10 μg L?1?200 μg L?1 (10?8?10?6 M) was observed with a sensitivity and detection limit of 0.11 nC/μg L?1 and 3.2 μg L?1 (16 nM) respectively from using a deposition time of 30 s at ?0.2 V (vs. SCE). This methodology was explored in 0.1 and 1 M chloride media over the mercury range 10 μg L?1?200 μg L?1 (5×10?8?10?6 M) where similar sensitivities of 0.087 nC/μg L?1 and 0.078 nC/μg L?1 were observed with an identical detection limit. The protocol is demonstrated to be useful for the determination of mercury for analysis of environmental water samples.  相似文献   

2.
Zipax-SAX pellicular beads are used as the anion-exchanger material ; a high-pressure packing technique is described. A Zipax-SAX column (200 × 4.5 mm) is used in a separation system with eluent suppression and conductivity detection as in ion-chromatography. Good separation of chloride, nitrite, bromide, nitrate and sulfate is obtained with 1.4 × 10-3 M succinate or adipate eluents at pH 7. A complete separation takes about 6 min at a flow rate of 3 ml min-1. Detection limits of 2 μg l-1 chloride, 4 μg l-1 nitrate and 10 μg l-1 sulfate can be reached if 2 ml of sample is preconcentrated.  相似文献   

3.
2-Mercapto-N-2-naphthylacetamide (thionalide) on silica gel is used for rapid preconcentration of μg l?1 levels of palladium(II) from aqueous solution, followed by atomic absorption spectrometric measurement. In batch experiments, palladium was quantitatively retained on the gel from solutions 5 M in acid to pH 8; equilibrium was achieved within 10 s. The chelating capacity of the gel was 7.5 μmol Pd g?1 at pH < 4. The effect of flow rate on retention was studied. Palladium retained on the column was completely eluted with 20 ml of 0.2 M thiourea in 0.1 M hydrochloric acid. The palladium concentration in sea water is shown to be < 0.3 μg l?1.  相似文献   

4.
Abstract

A new inorganic ion exchanger, lead antimonate has been synthesized having an Pb:Sb ratio of 1:5 and cation exchange capacity of 1.46 mequiv./g. It is fairly stable in water and dilute solutions of acids, bases and salts. Ion distribution studies on twenty metal ions have been determined on this gel at pH 1,2,3 and 5. The following mixtures have been separated: Mg2+ - Pb2+, Zn2+ - Pb2+, Zn2+ - Pb2+, Cu2+ - Pb2+, Al3+ - Pb2+, Zn2+ - Cd2+ and Mg2+ - Cd2+. Mg2+ and Al3+ were removed with 0.4 M ammonium nitrate, Cu2+ and Zn2+ with 0.4 M ammonium nitrate + 0.1M nitric acid (1:1), Pb2+ with 0.5M nitric acid and Cd2+ with 0.25M nitric acid. A tentative structure of this material is proposed on the basis of chemical analysis, pH titrations, thermogravimetry and IR spectrophotometry.  相似文献   

5.
A method is described for the determination of vanadium and molybdenum in samples of tap and bottled mineral water. After acidification with citric acid the water sample is heated to about 80°C to remove CO2; sodium citrate and ascorbic acid are added and the resulting solution of pH 3 is passed through a column of the strongly basic anion-exchange resin Dowex 1-X8 (citrate form) on which both vanadium and molybdenum are adsorbed as anionic citrate complexes. Vanadium is eluted with 6 M hydrochloric acid; molybdenum is recovered with 2 M perchloric acid-1 M hydrochloric acid. Vanadium and molybdenum are determined in the eluates by atomic-absorption spectrometry. The samples analysed contained 0.1–0.9 μg l?1 vanadium and 0.2–13 μg l?1 molybdenum.  相似文献   

6.
The a.c. polarographic determination of isoniazid (INH), N-acetylisoniazid (AcINH) and isonicotinic acid (INA) is described. Under the optimal conditions of pH, ionic strength and electrical parameters, the limits of detection are 0.5 μg ml-1 for AcINH, 0.2 μg ml-1 for INH, and 0.03 μg ml-1 for INA.  相似文献   

7.
Molecular emission cavity analysis is applied to the determination of nitrite and nitrate after their reduction to nitrogen monoxide by iodide or zinc. The white emission stimulated from nitrogen monoxide in an oxy-cavity placed in a hydrogen—nitrogen diffusion flame is measured at 526 nm. Calibration graphs are linear up to 300 μg N ml-1; the detection limit is 0.5 μg N ml-1 for nitrite and 2 μg N ml-1 for nitrate. There are few interferences. Procedures for the determination of nitrite and nitrate in admixture are described.  相似文献   

8.
The pH-stat method, which is well known in organic chemistry and biochemistry, is used for the kinetic determination of metal ion catalysts. Indicator reactions that involve protons can be followed by controlled addition of standard base or acid. This is illustrated by the following examples: determination of copper(II) (0.03–0.3 μg ml-1) with the indicator reaction ascorbic acid—peroxydisulphate; determination of molybdenum(VI) (0.2–2.5 μg ml-1) with the indicator reaction thiosulphate—hydrogen peroxide; determination of zirconium(IV) (0.2–2 μg ml-1) with the indicator reaction iodide—hydrogen peroxide; and determination of vanadium(V) (0.2–2 μg ml-1) with the indicator reaction iodide—bromate. For one example, the copper—ascorbic acid—peroxydisulphate reaction, it is shown that the pH-stat method has distinct advantages over closed systems, giving considerably better sensitivity for the determination of copper (0.5–5 ng ml-1 ).  相似文献   

9.
On the basis of a detailed study of the pilocarpine-induced nickel(II) pre-wave using various polarographic techniques, an electrode process mechanism is proposed in which the formation of a catalytic complex between aquo-nickel(II) and veronalate-nickel(II) on the one hand and unprotonated pilocarpine adsorbed on the electrode surface on the other is followed by the reduction of nickel(II) in the complex and the release of the catalytic ligand. The pre-peak recorded by differential-pulse polarography in the system 1 × 10?3 M Ni(II)-1 × 10?2 M sodium veronal, nitric acid (pH 8.5) (with ionic strength maintained at 0.2 with sodium nitrate) can be used for quantitative determination of pilocarpine at concentrations in the range 2.5 × 10?7-8 × 10?6 M.  相似文献   

10.
An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 μg l-1 As or Sb level. The reagent-blank detection limit is 0.2 μg l-1 As or Sb.  相似文献   

11.
A manifold incorporation an activated alumina (basic form) minicolumn is used to preconcentrate chromium(III), which is then eluted with 2 M nitric acid for detection. Calibration is linear up to 1000 μg l? Cr, and the limit of detection for a 10-ml sample is 0.05 μg l?1. The determination of chromium(III) in human urine is discussed.  相似文献   

12.
Inorganic mercury ions (5–50 ng l-1) present in natural waters (500 ml) are concentrated on anion-exchange resin (0.2 g; chloride form) in a batchwise operation. The resin is filtered off and introduced into a bubbler containing tin(II) solution. The adsorbed mercury ions are reduced to the metal and vaporized with a stream of air in a closed system. Satisfactory recoveries are obtained for sea waters made 0.1 M in nitric acid, and for river and spring waters also made 0.1 M in nitric acid or 0.01 M in ammonium thiocyanate. The method preconcentrates traces of inorganic mercury ions by an order of magnitude, and is also effective in preventing mercury loss during sample storage.  相似文献   

13.
A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of trioctylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 μg l?1 of tin in the MIBK solution or 0.2–0.3 μg g?1 in the rock. The concentration range is linear between 2.5 and 500 μg l?1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 μg l?1 level and < 7% at the 10–30 μg l?1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 μg g?1 or less.  相似文献   

14.
Atomic absorption spectrometry with an induction furnace is used for the determination of bismuth (0.015–10 μg g-1), lead (0.2–15 μg g-1) and tellurium (0.04–5 μg g-1) in 2–30-mg samples of copper and low-alloy copper dropped into the furnace. Calibration graphs of peak area versus mass of element were constructed by use of standardised alloys. The accuracy, precision and limits of detection of the method are described for numerous copper samples. With alloys containing more than 0.1 μg Bi g-1, 0.2 μg Pb g-1 and 0.8 μg Te g-1, average relative standard deviations are 7%, 6% and 8%, respectively. The limits of detection for bismuth, lead and tellurium are 0.01, 0.1 and 0.02 μg g-1, respectively.  相似文献   

15.
At concentrations above 50 μg l?1, silver(I) is determined in nitric acid medium by means of potentiostatic deposition onto a platinum-fibre electrode and subsequent constant-current stripping in the sample or potentiometric stripping in a potassium permanganate medium. Interference from copper(II) is reduced by a pulsed potential procedure whereby copper deposited onto the fibre electrode is reoxidized intermittently. At concentrations below 50 μg l?1, silver(I) is determined by using a mercury-coated carbon-fibre electrode and constant-current stripping in acetonitrile containing 0.20 M perchloric acid. Potentiostatic deposition for 30 min yielded a detection limit of 0.24 μg l?1 silver(I) at the 3σ level.  相似文献   

16.
Americium(III) can be quantitatively extracted with 1 M diisoamylsulphoxide in Solvesso-100 from aqueous 0.02 M HNO3—2.5 Al(NO3)3 solutions and, after dilution of the extract with ethanol and nitric acid, determined in the organic phase with arsenazo-III. The apparent molar absorptivity is 1.58 × 105 l mol-1 cm-1 at 652 nm. The system obeys Beer's law within the range 0.1–1.6 μg Am ml-1; 0.11 μg Am ml-1 is determined with a reproducibility better than ±2%. Relatively large amounts of Ca(II), Cr(III), Fe (III), U(VI), Cl-, NO2-, NO3- and F- are tolerated. Interferences of Ce(IV), Pu(IV) and Th(IV) are eliminated by prior extraction with 2-thenoyltrifluoroacetone; only europium(III) interferes appreciably. Colour development is almost instantaneous and absorbances are virtually constant for 12 h.  相似文献   

17.
Mercury in air was determined after collection in potassium permanganate or sodium carbonate solution. The mercury concentration in these solutions was determined in a computerized flow potentiometric stripping analyzer with a 10-μm gold fibre working electrode, a glassy carbon reference electrode and a platinum counter electrode. After sample electrolysis for 1–10 min, stripping was done in a 1 mg l?1 gold(III) solution in 0.01 M nitric acid/0.01 M sodium nitrate with a constant stripping current of 0.50 μA. Results obtained for flue gas samples were in good agreement with results from cold-vapor atomic absorption spectrometry.  相似文献   

18.
Summary Determination of Uranium and Thorium in Phosphate Rocks by a Combined Ion-Exchange — Spectrophotometric Method A selective anion-exchange separation and Spectrophotometric method has been developed for the determination of uranium and thorium in phosphate rocks. About 0.2 g of rock sample is decomposed with nitric acid. Uranium and thorium are adsorbed by anion-exchange on an Amberlite CG 400 (NO3 ) column from the sample solution adjusted to 2.5M in magnesium nitrate and 0.1M in nitric acid. Uranium and thorium are eluted consecutively with 6.6M nitric acid and 0.1M nitric acid, respectively. Uranium and thorium in the respective effluents are determined spectrophotometrically with Arsenazo III. Results are quoted on uranium and thorium in NBS standard phosphate rock and others.  相似文献   

19.
After wet ashing of the urine sample with nitric acid, vanadium is chelated with cupferron, extracted into 4-methylpentan-2-one and determined by atomic absorption spectrometry with a pyrolytically-coated graphite furnace atomizer. The sensitivity allows the precise determination of 1–500 μg V l-1 in urine. The coefficient of variation for triplicate urine measurements is <8% for 10 μg V l-1.  相似文献   

20.
Aliquots of nitrite-containing solutions are injected into small aliquots of 8 M hydrochloric acid and the evolved gases are swept by a stream of carrier gas through an absorption cell where transient absorbance in the gas phase is measured at 195 nm. The detection limit is 0.2 μg NO2- ml-1 with the calibration curve remaining linear to 65 μg NO2- ml-1 Reproducibility is reflected in 2.4% relative standard deviation from the mean at the 5 μg NO2- ml-1 level. There is no interference from CO32-, NO3-, SO42-, Br-, CN-, CNO-, or NH4+, but SCN-, I-, S2- and SO32- interfere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号