首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We employ a noncollinear implementation of density functional theory (DFT) including spin–orbit coupling (SOC) interaction to calculate the magnetic properties of Irn (n = 2–5) clusters. The impact of the magnetic anisotropy on the geometric structures and magnetic properties has been analyzed. SOC leads to formation of large orbital moment and a mixing of different spin states, but does not affect the relative stability of different structural isomers for a given cluster. In order to measure the SOC effect, we further define the spin–orbit energy (Eso) and compute the exact values. Magnetic anisotropy energies (MAEs) obtained from DFT calculations are further supported by the results of torque approach. We find that MAEs of Ir2 and Ir3 in ground state configurations are 40.6 and 28.5 meV respectively, while the MAE decreases to 9 meV for Ir4. For Ir5, MAE for its ground state structure increases to 38.3 meV.  相似文献   

2.
The reactions of OH (OD) radicals with CF2ClCClFH (R1), CF2ClCCl2H (R2), CFCl2CClFH (R3), and CFCl2CCl2H (R4) have been investigated theoretically by a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MPW1K/6-311+G(d,p) level. To improve the reaction enthalpy and potential barrier of each reaction channel, the single-point energy calculation is made by the MC-QCISD method. The enthalpies of formation of the species CF2ClCClFH, CF2ClCCl2H, CFCl2CClFH, CFCl2CCl2H, CF2ClCClF, CF2ClCCl2, CFCl2CClF, and CFCl2CCl2 are evaluated by two sets of isodesmic reactions. Using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) method, the rate constants of OH and OD radicals with CF2ClCClXH (X = F, Cl) and CFCl2CClXH (X = F, Cl) are evaluated over a wide temperature range of 100–2,000 K at the MC-QCISD//MPW1K/6-311+G(d,p) level. The calculated CVT/SCT rate constants are consistent with available experimental data. The results show that the tunneling correction has an important contribution in the calculation of rate constants at lower temperatures. For the above-mentioned four reactions, the kinetic isotope effects are also calculated. Finally, the effect of fluorine or chlorine substitution on reactivity of the C–H bond is discussed.  相似文献   

3.
By using the Amsterdam Density Functional program, we have studied the geometric features, stabilities and magnetic properties of AlnCu (n = 1–19) clusters. The magnetic structures of Al17Cu2 and Al19Cu clusters are found. Although the high spin ground state of Al12Cu cluster is in accordance with the Hund’s rule under spherical Jellium model (SJM), it is difficult to explain why the Al17Cu2 and Al19Cu clusters exhibit larger magnetic moments by the model. A superatom model under equivalent charge distribution is proposed. The magnetic properties of the Cu-doped Al clusters can be explained well by combination of the superatom model with SJM.  相似文献   

4.
The effect of phosphorus-containing ligands on the structure, energetics and properties of the (CdSe)n clusters (n = 3, 6, and 10) with different number of PH3 and PMe3 ligands were studied by using density functional theory calculations. The P atom in the ligand interacts with Cd and forms a strong Cd–P coordination bond. The introduction of ligands does not change the cluster architecture, but leads to considerable changes in Cd–Se bondlength, charge distribution, binding energy, HOMO–LUMO gap and optical absorption. The ligand influence is enhanced with increasing ligand coverage. A blueshift in absorption band was predicted for the clusters with increasing ligands, resulting from the electron donating characteristics of the ligands that hamper electron transition from Se to Cd. As P-containing ligands are often used in the preparation of CdSe nanocrystals, our calculations reveal the influence of ligand-cluster interaction on the cluster geometrical and electronic properties, which would be helpful for the nanocrystal design and synthesis.  相似文献   

5.
A density functional theory study was performed on fullerene derivatives C60X18 and C70X10 (X = H, F, Cl, and Br). The calculated results show that the lowest energy isomers are IPR-satisfying for C60X18 (X = H, F, Cl, and Br). It is found that the addition patterns of X (X = Cl and Br) are different from those of X (X = H and F) for C60, demonstrating that the stability of fullerene derivatives is partly attributed to the steric repulsion and electronegativity of added atoms. However, the lowest energy isomers are IPR-violating for C70X10 (X = H, F, and Cl), suggesting that many more fullerene derivatives may violate the isolated pentagon rule.  相似文献   

6.
Based on zinc blende and wurtzite structures of experimental ZnTe and CdTe nanocrystals, ZnmCdnXy (X = Te, Se and S) clusters were investigated using DFT/B3LYP/LANL2DZ. From analyses of their characters of conformations, HOMO–LUMO gaps, Raman and absorption spectra, Mulliken charges and WBI (Wiberg Bond Index) values, we have discovered that ZnmCdnTey, ZnmCdnSey and ZnmCdnSy molecules had similar characters. In this paper, characters of ZnmCdnTey were investigated in detail. First, we have found that HOMO–LUMO gaps, Raman spectra, absorption spectra, bond lengths and Mulliken charges of doping Zn2CdTe3, ZnCd2Te3, Zn3CdTe4, Zn2Cd2Te4 and ZnCd3Te4 structures were in the scope of corresponding naked ZnTe and CdTe clusters. These characters of doping ZnmCdnTey molecules show that their stabilities are good. Second, comparing with ZnTe structures, the wavelengths of the absorption peaks of doping ZnmCdnTey clusters shift to red in water environment. Moreover, with increasing of the number of Cd atom, their wavelengths of the absorption peaks gradually shift to red. This conclusion is consistent with the experimental fact. Third, Raman spectra of pure ZnTe clusters have higher frequencies than corresponding naked CdTe structures. As for doping molecules, the frequencies of their Raman spectra gradually shift to low frequencies with increasing of Cd atoms’ number.  相似文献   

7.
8.
A series of three new compounds obtained from the reaction of Rh2(OAc)4 and 2, 2 -dipyridylamine (Hdpa) under various conditions have been characterized. All are diamagnetic and have a Rh–Rh single bond. In Rh2(dpa)4, 1, there are four bridging dpa anions which bind the two Rh atoms through one pyridyl N atom and one amido N atom though two of these ligands interact further with a rhodium atom through the third N atom. In the other two compounds the Hdpa ligand is neutral. Thus Rh2(OAc)4(Hdpa)2, 2, is an adduct of the well known complex dirhodium tetraacetate in which the two Hdpa ligands occupy axial positions. In the third compound, Rh2(Hdpa)2(OAc)2Cl2, 3, only two acetate bridges are present. One Hdpa molecule chelates equatorially each rhodium atom and the chloride ions are axially coordinated. The Rh–Rh distances are 2. 4005(6) and 2. 4042(8) Å for 1 and 2, respectively. For 3, the Rh–Rh distance of 2. 593(1) Å is significantly longer than those in 1 and 2 because of the presence of fewer bridging ligands.  相似文献   

9.
In an attempt to find single-source precursors, a series of small clusters of inorganic azides of indium (Br2InN3) n (n = 1–6) were studied using the dispersion correction density functional theory (wB97XD). The obtained (Br2InN3) n (n = 2–6) clusters have the core structures of 2n-membered ring with alternating indium and α-nitrogen atoms. The influences of cluster size (oligomerization degree n) on the structures, energies, IR spectra, and thermodynamic properties of clusters were discussed. The computed binding energies indicate the stability: 3A > 3B, 4B > 4C > 4A > 4D, 5E > 5D > 5B = 5C > 5A and 6I > 6C > 6D > 6G ≥ 6H > 6F > 6E > 6B > 6A. It is also found that (Br2InN3)2 and (Br2InN3)4 clusters possess higher stability than their neighbor sizes judged by the calculated second-order difference of energies (Δ2 E). Meanwhile, thermodynamic properties for (Br2InN3) n (n = 1–6) clusters increase with the increasing temperature and oligomerization degree n, and the oligomerizations are thermodynamically favorable at temperatures up to 800 K.  相似文献   

10.
A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H2dhp), or 3-hydroxy-2-(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)2] complex in DMF are: g x = 1.9768, g y = 1.9768 and g z = 1.9390; A values (10−4 cm−1): A x , 59.4; A y//, 59.4; A z , 171.0. The νV=O band in the IR spectrum of the complex is at 986 cm−1. The complex is paramagnetic, with μeff = 1.65 BM (d1, spin-only) at 25 °C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)2] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)2] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)2] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)2] administered were effective in reducing experimental diabetes.  相似文献   

11.
The structural, relative stable and electronic properties of PbnSnn (n = 2–12) alloy clusters were systematically studied using density functional theory. The isomers of PbnSnn alloy clusters were generated and determined by ab initio molecular dynamics. By comparing the calculated parameters of Pb2 dimer and Sn2 dimers with the parameters from experiments, our calculations are reasonable. With the lowest-energy structures for PbnSnn clusters, the average binding energies, fragmentation energies, second- order energy differences, vertical ionization potentials, vertical electron affinities, HOMO–LUMO gaps, and density of states were calculated and analyzed. The results indicate that the Sn atoms have a tendency to bond together, the average binding energies tend to be stable up to n = 8, Pb8Sn8 cluster is a good candidate to calculate the molecular interaction energy parameter in Wilson equation, the clusters become less chemical stable and show an insulator-to-metallic transition, 3, 6, 8 and 11 are magic numbers of PbnSnn (n = 2–12) clusters, the charges always transfer from Sn atoms to Pb atoms in PbnSnn clusters except for Pb10Sn10 cluster, and density of states of PbnSnn clusters becoming continuous and shifting toward negative with the increasing size n.  相似文献   

12.
Genetic algorithm combined with the semi-empirical Hamitonian AM1/PM3 is used to search the low energy isomers of Al n Si m (n = 3, 5, m ≤ 3 and n = 4, m ≤ 4) and the charged clusters with 20 and 28 valence electrons. The candidate structures were optimized by the density functional theory PBE0 and B3LYP models with the triply split basis sets including polarization functions. The electronic structures show that Al–Si binary clusters behave like metal clusters. The molecular orbitals accord with that predicted by the jellium model, and the electron localization function shows the valence electrons are delocalized over the entire clusters. The clusters having 20 and 28 valence electrons exhibit pronounced stabilities and large energy gaps. The 20 valence electrons of Al4Si2 and Al3Si3 +, Al5Si? form closed shells 1S 21P 62S 21D 10. Al4Si4 and Al5Si3 ? have oblate structures and the P, D, F levels spilt considerably in these clusters. The electron density distributions suggest that doping silicon in the aluminum clusters enhances the stability considerably.  相似文献   

13.
The structures, stability patterns of C26H n (n = 2) formed from the initial D 3h C26 fullerene were investigated by use of second-order-Moller–Plesset perturbation theory. The study of the stability patterns of hydrogenation reaction on C26 cage revealed that type (β) carbons were the active site and the analyses of π-orbital axis vector indicated that the reactivity of C26 was the result of the high strain and the hydrogenation reaction on C26 cage was highly exothermic. The calculated 13C NMR spectra of C26H n (n = 2) predicted that the two sp 3 hybridization carbons in C26H n (n = 2) obviously moved to high field compare with that in D 3h C26. Hence, the C26H2 should be obtained and detected experimentally. Similarly, the structures and reaction energies of C26H n (n = 4, 6, 8) were further studied at HF/6-31G*, B3LPY/6-31G* and MP2/6-31G* level. The results suggested the hydrogenation products of C26, C26H n (n = 4, 6, 8), were more stable than the C26 cage.  相似文献   

14.
A σ-hole is defined as an electron-deficient region on the extension of a covalently bonded group IV–VII atoms. If the electronic density in the σ-hole is sufficiently low, then this region will have a positive electrostatic potential, which allows attractive noncovalent interactions with negative sites. SO2X2 and SeO2X2 (X = F, Cl and Br) have three Lewis acid sites of σ-hole located in the outermost of chalcogen atom and X end, participating in the chalcogen and halogen bonds with NH3 and H2O, respectively. MP2/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ calculations reveal that for a given halogen atom, SeO2X2 forms stronger chalcogen bond interactions than SO2X2 counterpart. Almost a perfect linear relationship is evident between the interaction energies and the magnitudes of the product of most positive and negative electrostatic potentials. The interaction energies calculated by M06-2X and MP2 methods are almost consistent with each other.  相似文献   

15.
The reactions of [Ni16(C2)2(CO)23]4? and [Ni38C6(CO)42]6? with CuCl afforded mixtures of the previously reported [HNi42C8(CO)44(CuCl)]7? bimetallic octa-carbide cluster and the new [HNi43C8(CO)45]7? and [HNi44C8(CO)46]7? homo-metallic octa-carbides. The three species have very similar properties resulting always in co-crystals such as [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1?x]·6.5MeCN (x = 0.14) (86% [HNi42C8(CO)44(CuCl)]7?, 14%[HNi43C8(CO)45]7?/[HNi44C8(CO)46]7?) and [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1?x]·5.5MeCN (x = 0.30) (70% [HNi42C8(CO)44(CuCl)]7?, 30% [HNi43C8(CO)45]7?/[HNi44C8(CO)46]7?). The new homo-metallic octa-carbides can be obtained free from the Ni–Cu octa-carbido cluster by reacting [Ni10(C2)(CO)16]2? in thf with a stoichiometric amount of CuCl, and crystals of [NMe4]6[H2Ni43+xC8(CO)45+x]·6MeCN (x = 0.72), which contain [H2Ni44C8(CO)46]6? (72%) and [H2Ni43C8(CO)45]6? (28%), have been obtained. Despite the different charges and compositions, these anions display almost identical structures, which are also closely related to those previously reported for the bimetallic Ni–Cd octa-carbido clusters [Ni42+xC8(CO)44+x(CdCl)]7? and [HNi42+xC8(CO)44+x(CdBr)]6?. Indeed, all these clusters are based on the same Ni42C8 cage decorated by miscellaneous [CdX]+ (X = Cl, Br), [CuCl] and [Ni(CO)] fragments.  相似文献   

16.
Systematic investigations on lowest energy CO adsorbed neutral and ionic Rhn (n = 2–8) clusters in the gas phase are performed with all electron relativistic method using density functional theory within the generalized gradient approximation. Geometrical and electronic parameters are evaluated to understand the bonding nature as well as the binding interaction of CO on stable neutral and ionic rhodium clusters. Anionic adducts exhibit higher adsorption energy along with smaller Rh–C and larger C–O bond distances in comparison to neutral and cationic RhnCO (n = 2–8) clusters. Synergic bond formation is noticed between rhodium and carbon atom of CO molecule due to back-donation of electron from metal d-orbitals to π* orbital of CO in the case of anionic and some neutral clusters. Angular and Mülliken charge analysis along with electron density distribution suggest that anionic rhodium clusters form strong bond with carbon atom of CO than the neutral and cationic clusters.  相似文献   

17.
The reactions of 2,2'-pyridyl, (2-Py)C(O)C(O)(2-Py), with the Cd(II) compounds under various conditions are studied. The medium and nature of the anions exert a decisive effect on the compositions and structures of the formed cadmium complexes. The reaction of cadmium diacetate with 2,2'-pyridyl in an aqueous-alcohol medium in air affords coordination compound [Cd(Рic)2(H2O)2] · H2O (I) (Pic? is picolinate ion, CO2C5H4N), and its crystal structure is determined. The crystals are monoclinic: space group P21/c, a = 7.499(1), b = 15.676(1), с = 12.719(1) Å, β = 94.79(1)°, V = 1490.0(2) Å3, Z = 4, ρcalcd = 1.502 g/cm3. The molecular packing of compound I is a supramolecular 3D framework consisting of discrete complexes [Cd(Pic)2(H2O)2] linked by hydrogen bonds O–H…O. The coordination sphere of Cd2+ contains two O atoms and two N atoms of the ligand and two water molecules. The coordination polyhedron of Cd2+ is a distorted octahedron.  相似文献   

18.
The thermal desorption of CO, H2, and CH3OH from the surface of Katalco-58 industrial catalyst for the synthesis of methanol and γ-Al2O3 was studied. Weak interaction of the gases with the surface of samples was observed over the temperature range 75–400°C. The desorption of the gases obeyed the second-order Wigner-Polyani equation. The desorption energies of the gases were calculated. The mechanism of dimethyl ether synthesis was studied.  相似文献   

19.
This study investigates two lanthanide compounds (La3+ and Sm3+) obtained in water/ethyl alcohol solutions employing the anionic surfactant diphenyl-4-amine sulfonate (DAS) as ligand. Both sulfonates were characterized through IR, TG/DTG (O2 and N2). The thermal treatment of both compounds at 1273 K under air leaves residues containing variable percentages of lanthanide oxysulfide/oxysulfate phases shown by synchrotron high-resolution XRD pattern including the Rietveld analysis. The phase distributions found in the residues evidence the differences in the relative stability of the precursors.  相似文献   

20.
A new Co(III) complex of 1,2-cyclohexanedionedioxime and thiocarbamide with an SO 4 2? anion and solvation water molecules in the outer sphere has been synthesized and its structure has been defined. Orthorhombic crystals, a = 11.659(2) Å, b = 26.448(5) Å, c = 30.142(6) Å, V = 9295(3) Å 3, Z = 8, dcalc = 1.599 g/cm3, space group Pbca; final R index is 0.0578 for 8221 reflections with I > 2σ(I). In the octahedral Co(III) complex, two 1,2-cyclohexanedionedioxime residues lie in the equatorial plane, while two thiocarbamide molecules are in the axial plane. Intramolecular bonds: N-H…O and O-H…O type hydrogen bonds and π-π interactions that stabilize the complex cations. In crystal, the components are linked by N-H…O and O-H…O hydrogen bonds into a 3D framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号