首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

2.
A new Co-base sodium metaphosphate compound, NaCo(PO3)3, has been synthesized here by solid-state method. The crystal structure is refined by the Rietveld method, and the results reveal that NaCo(PO3)3 has an orthorhombic structure with the space group of P2 1 2 1 2 1 and lattice parameters of a = 14.2453(2) Å, b = 14.2306(1) Å, and c = 14.2603(2) Å. Its typical morphology and chemical composition are confirmed by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The valence states of all elements and the internal/external vibrational modes of NaCoP3O9 compound are measured by X-ray photoelectron and vibrational spectrum, where a typical feature of the (PO3)? polyanion group is observed. Meanwhile, the electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries are also elevated and an initial discharge capacity of 33.8 mAh/g can be obtained at 0.05 C within 1.5–4.2 V. After 20 cycles, a discharge capacity of 26.7 mAh/g can be obtained and a well-kept oxidation–reduction plateau is still observed for NaCo(PO3)3 cathode, indicating the good reversibility of this metaphosphate electrode.  相似文献   

3.
In this study, a series of binary mixtures of N-butyl stearate (nBS) and methyl palmitate (MP) were used to produce a novel composite phase change material (CPCM) for potential application in the eastern China, and their thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC indicated that the mixture consisting of 10 mass% nBS and 90 mass% MP is optimum as the CPCM in terms of the phase change temperature ranges (T f = 19.74–5.59 °C; T m = 18.34–33.80 °C) and latent heats (ΔH f = 176.8 J g?1; ΔH m = 189.3 J g?1). On the other hand, the thermal reliability and chemical stability of the CPCM after 120, 180, 240, 300, 360 and 500 accelerated thermal cycling tests were studied by DSC and fourier transform infrared (FTIR) analysis. The results demonstrated that the CPCM had good thermal reliability and chemical stability.  相似文献   

4.
Our understanding of nanoparticle toxicity and fate in the aquatic environment is still patchy. In the present study, the toxicity of silver nanoparticles coated by Camellia sinensis (Cs) leaf extract metabolites (Cs-AgNPs) was investigated in comparison with C. sinensis leaf extract and AgNO3 on a micro-crustacean, Ceriodaphnia cornuta, and a fish Poecilia reticulata. 100% mortality of C. cornuta was observed post-exposure to AgNO3 (40 µg/ml) if compared to the Cs leaf extract and Cs-AgNPs, showing 30 and 56% mortality at the same concentration, respectively. In P. reticulata 100% mortality was observed testing AgNO3 and Cs-AgNPs post-exposure to 1 and 30 µg/ml, respectively. Light microscopy and CLSM images showed the accumulation of nanoparticles in the intestine of C. cornuta treated with Cs-AgNPs at 40 µg/ml. In addition, histological observations confirmed the abnormal tissue texture in nanoparticle-exposed P. reticulata, if compared to control fishes. Furthermore, C. cornuta and P. reticulata treated with Cs-AgNPs showed DNA damages compared to the control. Overall, these findings indicated relevant limits about the employ of silver-based pesticides in the environment, and also pointed out the Cs-AgNPs were less toxic to C. cornuta and P. reticulata if compared to silver ions.  相似文献   

5.
For the first time in the published literature, a study is described concerning the use of the saw-sedge Cladium mariscus (C. mariscus) for adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous systems. Among the experiments carried out, the elemental composition of C. mariscus was determined (C = 48.0 %, H = 7.1 %, N = 0.95 %, S = 0.4 %), FTIR spectroscopic analysis was performed to confirm the chemical structure of the adsorbent, and porous structure parameters were measured: BET surface area (A BET  = 0.6 m2/g), total pore volume (V p  = 0.001 cm3/g) and average pore size (S p  = 6.6 nm). It was shown that the effectiveness of removal of 2,4-D from aqueous systems using C. mariscus depends on parameters of the process: contact time, system pH, mass of sorbent, and temperature. Maximum adsorption was attained for a solution at pH = 3. Further increase in the alkalinity of the tested systems led to a reduction in the effectiveness of the process. The kinetic of adsorption of 2,4-D by C. mariscus was also determined, and thermodynamic aspects were investigated. The experimental data obtained correspond to a pseudo-second-order kinetic model of type 1. Additionally the negative values obtained for ΔHº indicate that the process is exothermic, and the negative values of ΔGº show it to be spontaneous. As the temperature of the system increases the spontaneity of adsorption is reduced, in accordance with the exothermic nature of the process.  相似文献   

6.
The single crystal X-ray diffraction analysis of the title compound, C14H14N2O, reveals that an interesting intermolecular or extended structure (hydrogen-bonded polymeric zigzag chains) is formed by linking its monomer units with O–H···N type intermolecular hydrogen bonds. The compound crystallizes in the monoclinic space group P21/n with a = 5.8151(5) Å, b = 18.106(1) Å, c = 11.515(1) Å  and β = 96.891(7)°. In order to understand better its structural aspects in solid state, quantum chemical (PM3) calculations were performed on a part of the extended structure of the title compound containing ten monomers. To determine in vacuo conformational flexibility of the compound, molecular energy profile of the title compound was obtained with respect to a selected torsional degree of freedom and the pedal angle varied from ?180° to +180° in every 10°. The results from the computational study suggest that hydrogen-bonding properties in the crystal lattice is fundamental in determining the crystallographically observed conformation of the title compound.  相似文献   

7.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

8.
The spectroscopic properties and liquid structure of pure tri-n-butyl phosphate (TBP) and FeCl3/TBP solutions have been investigated by Uv–Vis and Raman spectroscopies, X-ray diffraction and conductometry. Uv–Vis and Raman spectra, supported by conductometric measurements, consistently indicate that the solubilized salt is present mostly as TBP n [FeCl3???n ] n+ and FeCl4 ? complex ions due to specific interaction with the TBP phosphate group. Thanks to this interaction, a high amount of salt (up to 13 % w/w) can be dissolved despite the relatively low dielectric constant of TBP. The X-ray diffractogram of pure TBP has been interpreted in terms of three main contributions which can be attributed to spatial pair correlations between atoms of interacting TBP molecules. In the presence of increasing FeCl3 amounts, it has been observed a progressive structuring effect, exerted by the dissolved salt, on the layers of opportunely oriented TBP molecules due to the formation of the complex ionic species. By simple treatment with NaBH4, the synthesis of Fe nanoparticles has been achieved. The absence of water, the easiness of preparation, the high amount of salt which can be suspended and the peculiar physico-chemical properties of such systems are all elements worth of note for the fields of nanoparticle synthesis and for specialized technological applications.  相似文献   

9.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

10.
A mixed oxide-covered mesh electrode composed of NiCo2O4 (MOME-NiCo2O4) was prepared on a stainless-steel substrate using thermal decomposition (slow-cooling rate method). Surface, bulk and electrochemical properties of MOME were studied using different techniques, namely scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) with determination of the electrochemical porosity (?) and morphology factor (φ) parameters, quasi-stationary polarisation curves (PC) and electrochemical impedance spectroscopy (EIS). SEM images revealed a good coverage of the metallic wires by a compact oxide layer (absence of cracks). XRD analysis confirmed the formation of the spinel NiCo2O4 with the presence of NiO. The ‘in situ’ surface parameters denoted as ? and φ exhibited values of 0.39 and 0.33, respectively, revealing that the electrochemically active surface area is mainly confined to the ‘outer/external’ surface regions of the oxide layer. The PC was characterised by two Tafel slopes distributed in the low (b 1 = 46 mV dec?1) and high (b 2 = 59 mV dec?1) overpotential domains. The corresponding apparent exchange current densities were j 0(1) = (3.43 ± 0.11) × 10?6 A cm?2 and j 0(2) = (6.70 ± 0.08) × 10?6 A cm?2, respectively. The EIS study accomplished in the low-overpotential domain revealed a Tafel slope (b 1) of 51 mV dec?1. According to the spin-trapping reaction using N,N-dimethyl-p-nitrosoaniline (RNO), the MOME-NiCo2O4 electrode exhibited good performance for the generation of weakly adsorbed hydroxyl radicals (HO?) during the OER in electrolyte-free water.  相似文献   

11.
The process of reduction of divalent copper ions with tert-butylamine borane in dilute aqueous solutions of poly(N-vinylpyrrolidone) is investigated. The influence of polymer molecular mass on properties of the resultant Cu2O sols is studied. It is shown that Cu2O nanoparticles with an average diameter of 6–8 nm independent of polymer molecular mass and a relatively narrow size distribution of particles are formed in the systems under study. The contour length of macromolecules and the hydrodynamic diameter of a poly(N-vinylpyrrolidone) macromolecular coil are compared with the diameter of Cu2O particles. Poly(N-vinylpyrrolidone) with M ≥ 1 × 104 can be used to produce Cu2O nanoparticles. Poly(N-vinylpyrrolidone) with M > 4 × 104 should be used for the formation of long-living Cu2O sols.  相似文献   

12.
The geometric structures, relative stabilities, magnetic properties of Mo-doped gold clusters Au n Mo(n = 1–10) have been investigated at the PBE1PBE/def2TZVP level of theory. The results show that molybdenum doping has a significant effect on the geometric structures and electronic properties of Au n Mo(n = 1–10) clusters. For the lowest energy structures of Au n Mo(n = 1–10), the two dimensional to three dimensional transition occurs at cluster size n ≥ 8, and their relative stabilities exhibit odd–even oscillation with the change of Au atom number. It is found that charge in corresponding Au n Mo clusters transfers from Mo atom to Au n host in the size range n = 1–7, whereas the charge in opposition direction in the size range n = 8–10. In addition, the magnetic properties of Au n Mo clusters are enhanced after doping single Mo atom into the corresponding gold clusters. Our results are valuable for the design of magnetic material.  相似文献   

13.
In this paper, a review of the impact of most common nanoparticles on the Leidenfrost temperature T Leid in heat transfer applications is delivered. Moreover, a simple economic analysis of the nanoparticles use is proposed. When coolant is distilled water, T Leid can range 150–220 °C; occasionally, it can even amount to over 400 °C. When the base liquid is modified by additives, considerable changes in the character of heat transfer are observed. Out of five nanofluids under consideration in this study, the best thermal effect (up to 50%) is obtained when Al2O3 nanofluid having particle sizes ~39 nm and volume concentration of 0.1% is used. Conversely, the fluid containing TiO2 particles, 20–70 nm in size, seems to be the worst of the analysed fluid, giving only 7% heat transfer enhancement in comparison with water. However, when TiO2 nanoparticles are far smaller, very good thermal effects are obtained (23–25%). In a majority of the cases analysed, the temperature that marks the onset of film boiling is inversely proportional to concentrations of nanoparticles, which is relevant from the economic standpoint.  相似文献   

14.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

15.
l-Tyrosine alkyl esters are used as prodrugs for l-tyrosine. Although prodrugs are often designed for their behavior in solution, understanding their solid-state properties is the first step in mastering drug delivery. The crystal structure of l-tyrosine methyl ester has been determined and compared to published structures of l-tyrosine and its ethyl and n-butyl esters. It is almost isostructural with the other esters: it crystallizes in the orthorhombic chiral space group P212121, a = 5.7634(15) Å, b = 12.111(2) Å, c = 14.3713(19) Å, V = 1003.1(4) Å3 with Z′ = 1. Their main packing motif is a C(9) infinite hydrogen-bond chain, but the conformation of l-tyrosine methyl ester is different from the other two: eclipsed versus U-shaped, respectively. The published structure of the ethyl ester, which was incomplete, has been confirmed by X-ray powder diffraction data. Because l-tyrosine methyl ester is very stable (28 years stored at room temperature), and its hydrolysis rate is relatively low, it should be one of the better prodrugs among the alkyl esters of tyrosine.  相似文献   

16.
The molecular and crystal structures of the title compound, C16H18N2O, were characterized and determined by single crystal X-ray diffraction method in addition to spectroscopic means such as IR, UV–VIS and 1H NMR. The compound crystallizes in orthorhombic space group P bca, with a = 9.3350(5) Å, b = 23.4878(13) Å, c = 26.5871(12) Å, Z = 16, D calc. = 1.1591(1) g/cm3, μ (MoKα) = 0.073 mm?1. Monomers of the compound in the crystal structure are linked into C(7) and C(8) chains generated by translation along the [1 0 0] direction with the aid of O–H···N type H-bonds which serve to the stabilization of periodic organization of the molecules beside major and minor component in the disordered azo fragment. In order to describe conformational flexibility and the crystal packing effects on the molecular conformation, potential barriers regarding the rotation along both Ar–N bonds were calculated by varying the related torsional degrees of freedom in every 10° ranging from ?180° to +180° via quantum chemical calculations at DFT/B3LYP level.  相似文献   

17.
A new high-nitrogen complex [Cu(Hbta)2]·4H2O (H2bta = N,N-bis-(1(2)H-tetrazol-5-yl) amine) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analyses. X-ray structural analyses revealed that the crystal was monoclinic, space group P2(1)/c with lattice parameters a = 14.695(3) Å, b = 6.975(2) Å, c = 18.807(3) Å, β = 126.603(1)°, Z = 4, D c = 1.888 g cm?3, and F(000) = 892. The complex exhibits a 3D supermolecular structure which is built up from 1D zigzag chains. The enthalpy change of the reaction of formation for the complex was determined by an RD496–III microcalorimeter at 25 °C with the value of ?47.905 ± 0.021 kJ mol?1. In addition, the thermodynamics of the reaction of formation of the complex was investigated and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{{{\uptheta}}} \), \( \Updelta H_{ \ne }^{{{\uptheta}}} \), and \( \Updelta G_{ \ne }^{{{\uptheta}}} \) were obtained. The effects of the complex on the thermal decomposition behaviors of the main component of solid propellant (HMX and RDX) indicated that the complex possessed good performance for HMX and RDX.  相似文献   

18.
Two napelline skeletal diterpenoid alkaloids 15-acetylsongorine, C24H33NO4 I, and songoramine, C22H29NO3 II, were first isolated from the roots of Aconitum Szechenyianum Gay. The crystal structures were determined by X-ray single-crystal diffraction analysis. The crystal I is the triclinic system with space group P1 having unit cell parameters of a = 9.360(8) Å, b = 11.593(9) Å, = 11.830(16) Å, α = 113.223(15)°, β = 105.950(16)°, γ = 101.296(12)°, and Z = 2. Hydrogen bonds O–H···O and O–H···N joint the molecules into dimer. The crystal II belongs to the orthorhombic system with space group P212121 having unit cell parameters of a = 8.950(2) Å, = 13.272(3) Å, = 15.454(4) Å and Z = 4. The O–H···O hydrogen bonding interaction links the molecule into linear chains. The distortion of rings of compound I and II were evaluated by calculation of the Cremer and Pople puckering parameters. The presence of the C–O–C bond in the compound II results in the changes of ring conformations compared with that of the compound I.  相似文献   

19.
A novel peroxy group-containing silane coupling agent was synthesized and anchored on the surface of titanium dioxide nanoparticles (nano-TiO2) to form an immobilized-initiator-modified nano-TiO2 species. In this study, the kinetic parameters of the peroxy group-containing silane were tested and assessed using DSC. The pre-exponential factor (Ad) was 8.973?×?108 and the activation energy (Ea) was 80.736 kJ mol?1. Moreover, the empirical Arrhenius equation was determined to be ln Kd?=???80.736/RT?+?ln(8.973?×?108). To obtain continuous polymers, acrylonitrile (AN) and methyl methacrylate (MMA) were polymerized using the novel peroxy group-containing silane and FeSO4 as an initiator system. The number average molecular weights (Mn of PAN?=?3×104 and Mn of PMMA?=?1.4?×?105) and polydispersity indexes (PDI of PAN?=?2.76 and PDI of PMMA?=?1.65) were determined by GPC. It was suggested that the redox initiation system can generate highly reactive species on the surfaces of inorganic nanoparticles. The nano-TiO2-grafted polymers were successfully obtained.  相似文献   

20.
Thermal motion is the inherent driving force of crystal substances formation. In borates, carbonates and nitrates such an organizing force are the strong anisotropy of thermal vibrations of atoms in the TO3 triangles (T = B, C, N), flat triborate and other B–O rigid groups containing TO3 triangles. These triangles and rigid groups, due to the sharp anisotropy of thermal vibrations, tend to be arranged in the parallel (or preferable) orientation. In this case, chemical compound has usually the least energy. The examples of the self-organization of atoms, TO3 triangles and rigid groups during crystallization process are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号