首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Variable-charge nanoparticles such as proteins and humics can adsorb strongly to charged macroscopic surfaces such as silica and iron oxide minerals. To model the adsorption of variable-charge particles to charged surfaces, one has to be able to calculate the adsorption free energy involved. It has been shown that the change in the free energy of variable-charge particles is related to the change in their average chemical state upon adsorption, which is commonly described using surface complexation models. In this work, expressions for the free-energy change in variable-charge particles due to changes in chemical binding are derived for three ion-binding models (i.e., the Langmuir, Langmuir-Freundlich, and NICA models) and for changes due to nonspecific binding for the Donnan model. The expressions for the adsorption free energy of the variable-charge particles to a charged surface are derived on the basis of the equality of the (electro)chemical potential of the particles in the bulk solution and adsorption phase. The expressions derived are general in the sense that they account for the competition between charge-determining ions that bind chemically to the particles, and they also apply in case of the formation of chemical bonds between particle ligands and surface sites. The derived expressions can be applied in the future to model the adsorption of variable-charge nanoparticles to charged surfaces. The results obtained for the NICA-Donnan model make it possible to apply this advanced surface complexation model to describe the adsorption of humics to minerals.  相似文献   

2.
Adsorption of protein from saliva on hydroxyapatite was compared with adsorption of several typical proteins with different electric charges, i.e. lysozyme, human serum albumin, β-lactoglobulin and ovalbumin. Adsorbed amounts of these proteins were determined and electrophoretic mobilities of protein-covered hydroxyapatite particles were measured, at different values for the adsorbed mass and, therefore, at various degrees of surface coverage. Also, adsorption kinetics were investigated by streaming potential measurements of a hydroxyapatite surface in contact with a protein solution, allowing monitoring of changes in the zeta-potential of the protein-covered hydroxyapatite surface in real time. The adsorbed amounts show that, as compared to most of the other proteins, the saliva proteins have remarkably low adsorption affinity. The measured values for the electrophoretic mobilities indicate that the positively charged proteins in the saliva mixture preferentially adsorb onto the negatively charged hydroxyapatite surface; this is most pronounced at low protein concentration in solution (i.e. at low coverage of the surface by the protein). Preferential uptake of the positively charged saliva proteins during the initial stages of the adsorption process is also concluded from the results of the kinetics experiments. Preferential adsorption of positive proteins is somewhat suppressed by the presence of Ca2+ ions in the medium. The results suggest that an acquired pellicle on a tooth in an oral environment contains a significant fraction of positively charged proteins. The positively charged proteins in the pellicle reduce the zeta-potential at the tooth surface to low values; consequently, electrostatic forces are expected to play only a minor role in the interaction with other components (e.g. bacterial cells).  相似文献   

3.
The adsorption of bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) on polyelectrolyte-coated glass substrates was investigated using fluorescence microscopy. Glass substrates may inhibit adsorption of proteins due to electrostatic repulsion. However, when the substrate is modified with a thin film of positively charged polyelectrolytes, proteins can be adsorbed due to the attractive electrostatic interactions. In this study, poly(allylamine-hydrochloride) (PAH) molecules, which have positively charged amino groups at pH 7, were used to generate a positively charged layer on the glass substrate. A surfactant, sodium dodecyl sulphate (SDS), was used to alter the glass-protein interaction and subsequently modulate the coverage of adsorbed protein. We applied this technique to control the heterogeneously charged microscopic patterns of biomolecules created when the adsorption of protein is done in conjunction with colloidal lithography.  相似文献   

4.
High-resolution two-dimensional polyacrylamide electrophoresis (2-DE) is commonly used as an analytical approach to resolve and detect most of the numerous protein species of an organism. However, the isolation of microgram amounts of protein in a 2-DE spot in a form suitable for microsequence analysis and amino acid composition analysis is a key step in the chemical characterization of these proteins. With the development of chemically inert membranes it is now possible to retain proteins present in low quantities from the polyacrylamide matrix with high yields. The immobilized proteins are suitable for direct sequence analysis and amino acid composition analysis. The combination of protein chemical and electrophoretic techniques makes it possible to obtain chemical information from subpicomole quantities of protein, resulting in the availability of a new set of biologically important proteins for structural analysis. This paper summarizes the methods and strategies for the chemical protein analysis of 2-DE spots in our laboratory.  相似文献   

5.
Protein adsorption, which shows wide prospects in many practical applications such as biosensors, biofuel cells, and biomaterials, has long been identified as a very complex problem in interface science. Here, we present a review on the multiscale modeling and simulation methods of protein adsorption on surfaces with different properties. First, various simulation algorithms (replica exchange, metadynamics, TIGER2A, and PSOVina) and protein models (colloidal, coarse-grained, and all-atom models) are introduced. Then, recent molecular simulation progresses about protein adsorption on different material surfaces (such as charged, hydrophobic, hydrophilic, and responsive surfaces) are retrospected. It has been demonstrated that the adsorption orientation of proteins on charged surfaces and hydrophobic surfaces can be controlled by the electrical dipole and the hydrophobic dipole of proteins, respectively. Superhydrophilic zwitterionic surfaces can resist protein adsorption because of the strong hydration. Under the stimuli of external conditions, the surface properties of materials can be modulated, and thus, the adsorption/desorption of proteins on responsive surfaces can be controlled. Finally, the future directions of molecular simulation study of protein adsorption are discussed.  相似文献   

6.
The model study on physico-chemical basis of the tentative mechanism of artificial immunogene action was undertaken. Monodisperse carboxylated polystyrene latex was used as model to investigate the following problems: reversibility of polycation adsorption on the negatively charged surface, migration of macromolecules between particles, adsorption of polycation in the presence of abundant proteins. Polycation was proven to adsorb reversibly and, despite its high affinity to the negatively charged surface, to pass from one disperse phase particle to another. Neither positively nor negatively charged proteins prove to hinder polycation adsorption on the surface.  相似文献   

7.
Separations of proteins at acid pH in the presence of a high concentration of surfactant [sodium laurylsulfate (SDS), 50 mmol/l] was investigated. The purpose of using high concentrations of SDS as background electrolyte modifier was threefold: First, the surfactant exerts a washing effect upon the capillary wall thus preventing binding of analytes and possible clogging of the capillary. Second, it was revealed that even under very acid conditions (below pH 3) the surfactant is capable of forming associates with protein analytes which still bear considerable negative charge and can be separated on this basis. Third, the system can be applied not only for protein mixtures sufficiently soluble in neutral to alkaline media (leukocyte lysates, standard proteins), but it can be used also with proteins, that are under such conditions virtually insoluble and their solubilization is possible in acid buffers only (eggshell proteins or collagen CNBr fragments). The result was that adsorption to the capillary wall was minimized and the analytes were separated as negatively charged associates with high efficiency. With collagen fragments partition was possible on the affinity differences of the peptides to the surfactant micelles and inner wall of the capillary. Theoretical plate counts approaching 100,000 were easily achieved even with proteins which under the more conventional operation conditions exhibit considerable sticking to the capillary wall. The other feature of this system is that the associates move very rapidly to the anode. Owing to the low pH, endoosmotic flow is negligible, and therefore the system has to be operated at reversed polarity.  相似文献   

8.
This study describes a strategy of using zinc selenium quantum dots (ZnSe QDs) modified with 3-mercaptopropionic acid (3-MPA) as the matrix for direct analysis of peptides and proteins from sodium salt solution in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The enhancement of detection sensitivity for these biomolecules was due to the adsorption of positively charged peptides or proteins onto the surfaces of negatively charged ZnSe-3MPA QDs via electrostatic interactions resulting in an increase in ionization efficiency for sodium adduct ions ([M+Na](+)). The applicability of the current approach was demonstrated for a variety of peptides, including leucine-enkephalin, methione-enkephalin, HW6, substance P and angiotensin II, and proteins (cytochrome c, myoglobin and lysozyme). Signal intensities of these peptides or proteins can be enhanced by 25-95 times compared with those obtained by LDI-MS in the absence of ZnSe-3MPA QDs. Applying ZnSe-3MPA QDs to serve as the matrix in SALDI-MS is a simple and effective approach for direct analysis of peptide and protein molecules from sodium salt solution without any pretreatment as the peptides and proteins can be successfully detected as sodium adduct ions ([M+Na](+)).  相似文献   

9.
Iminodiacetic acid (IDA) and octyl moieties were covalently bound on nonporous particles, which were prepared from dispersion polymerization of methyl methacrylate and glycidyl methacrylate. After being charged with copper ions, the IDA-bound particles could specifically adsorb deoxyribonuclease I (DNase I) through the affinity interaction between protein and immobilized metal ion. A mixed-ligand (metal–chelate and octyl–bound) support was obtained after hydrophobic (octyl) groups were also introduced to the particle surface. The affinity adsorption of DNase I on the copper–IDA chelate was influenced by interaction between the protein and the bound octyl group. Both the affinity and the hydrophobic interactions could be well described by the Langmuir isotherms. The equilibrium adsorption constants were estimated separately to be 0.96 and 0.50 liter g−1 for affinity and hydrophobic bindings, respectively. For binding on mixed-ligand support, the adsorption constant was 0.45 liter g−1. It was evident that both affinity and hydrophobic interactions are involved in the adsorption of proteins onto mixed-ligand particles. Desorption of the inactive proteins from the support was possible by increasing the hydrophobicity of the solution.  相似文献   

10.
The word “keratin” is usually applied to that group of fibrous proteins characterized by the presence of the amino acid cystine which enables the formation of disulfide bridges between neighboring polypeptide chains. In nature, the hardened form of keratin plays a protective role and appears in many forms of animal outer covering, such as wool, hair, nails, horn, feather, and quill, where a high degree of physical strength and chemical resistance are desirable. This variety provides a wide selection of geometrical forms and subtle differences in composition between keratins, which can be employed in the study of sorption mechanisms for this material. All forms of keratin contain hydrophilic amino acid residues and peptide groups which ensure significant adsorption of water vapor. Keratin differs from the soluble proteins because the presence of cross-links renders it insoluble in water; it is only soluble in reagents capable of rupturing the disulfide bridges. However, in common with other biopolymers and synthetic polymers having an affinity for water, keratin swells on adsorption over the entire humidity range.  相似文献   

11.
When simulating protein adsorption behavior, decisions must first be made regarding how the protein should be oriented on the surface. To address this problem, we have developed a molecular simulation program that combines an empirical adsorption free energy function with an efficient configurational search method to calculate orientation-dependent adsorption free energies between proteins and functionalized surfaces. The configuration space is searched systematically using a quaternion rotation technique, and the adsorption free energy is evaluated using an empirical energy function with an efficient grid-based calculational method. In this paper, the developed method is applied to analyze the preferred orientations of a model protein, lysozyme, on various functionalized alkanethiol self-assembled monolayer (SAM) surfaces by the generation of contour graphs that relate adsorption free energy to adsorbed orientation, and the results are compared with experimental observations. As anticipated, the adsorbed orientation of lysozyme is predicted to be dependent on the discrete organization of the functional groups presented by the surface. Lysozyme, which is a positively charged protein, is predicted to adsorb on its 'side' on both hydrophobic and negatively charged surfaces. On surfaces with discrete positively charged sites, attractive interaction energies can also be obtained due to the presence of discrete local negative charges present on the lysozyme surface. In this case, 'end-on' orientations are preferred. Additionally, SAM surface models with mixed functionality suggest that the interactions between lysozyme and surfaces could be greatly enhanced if individual surface functional groups are able to access the catalytic cleft region of lysozyme, similar to ligand-receptor interactions. The contour graphs generated by this method can be used to identify low-energy orientations that can then be used as starting points for further simulations to investigate conformational changes induced in protein structure following initial adsorption.  相似文献   

12.
The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling.  相似文献   

13.
The purposes of this study were to prepare dispersions in various ratios of nicotine (NCT) and magnesium aluminum silicate (MAS) at different pHs and to investigate interaction of NCT with MAS by characterizing microscopic morphology, particle size and zeta potential of MAS-NCT flocculates. Moreover, the NCT adsorption onto MAS at different pHs were also investigated. At basic medium, incorporating NCT into MAS dispersion brought about a small decrease in the zeta potential of MAS, leading to a loose flocculate formation of MAS. This is likely to be due to an adsorption of unionized form of NCT onto MAS via intermolecular hydrogen bonding. The lower zeta potential, denser matrix structure and larger size of the flocculates was found at neutral and acidic media because the protonated species of NCT could interact with the negatively charged MAS by electrostatic force. In addition the flocculates formed at pH 4 possibly possessed a higher density than those formed at pH 7, suggesting that the diprotonated species of NCT at pH 4 caused stronger interaction with MAS. The adsorption isotherms of NCT onto MAS at different pHs can be described not only using the Langmuir model, but also using the Freundlich model. The higher affinity of NCT adsorption onto MAS at neutral and acidic media was found. However, the adsorption capacity to form NCT monolayer reduced with decreasing the pH of the dispersions because of an adsorption of hydronium ions and a decrease in surface area of adsorption site by flocculation. These findings suggested that the flocculation of MAS dispersion could be induced by incorporation of NCT. The characteristics, such as particle size and zeta potential, of the NCT-MAS flocculates and the adsorption isotherms of NCT onto MAS were depended upon pH of dispersion, in which the different charged species of NCT were formed.  相似文献   

14.
Foam fractionation by itself cannot effectively concentrate hydrophilic proteins such as lysozyme and cellulase. However, the addition of a detergent to a protein solution can increase the foam volume, and thus, the performance of the foam fractionation process. In this article, we propose a possible protein concentration mechanism of this detergent-assisted foam fractionation: A detergent binds to an oppositely charged protein, followed by the detergent-protein complex being adsorbed onto a bubble during aeration. The formation of this complex is inferred by a decrease in surface tension of the detergent-protein solution. The surface tension of a solution with the complex is lower than the surface tension of a protein or a detergent solution alone. The detergent can then be stripped from the adsorbed protein, such as cellulase, by an artificial chaperone such as beta-cyclodextrin. Stripping the detergent from the protein allows the protein to return to its original conformation and to potentially retain all of its original activity following the foam fractionation process. Low-cost alternatives to beta-cyclodextrin such as corn dextrin were tested experimentally to restore the protein activity through detergent stripping, but without success.  相似文献   

15.
A computer model has been developed to simulate the adsorption of proteins onto charged surfaces displaying an electric double layer. Coadsorption of ions onto the surface is included by means of explicit ions. Only electrostatic interactions are considered. Monte Carlo simulations in the canonical ensemble of the enzyme cutinase and 15 variants (modeled from the X-ray tertiary structure of the wild-type) were performed. Adsorption free energies for all variants were calculated by the thermodynamic integration method. Distributions of the electric moment and the vector pointing toward the protein active site and parallel to its central β-sheet were determined to elucidate the mean orientation of the protein with respect to the surface as a function of its distance from the surface. It was found that the free energy of adsorption varied linearly with the total charge of the protein, while the electric moment (dipole moment) had a second-order but significant effect. Though an increase of the electric moment generally resulted in a slightly increased affinity of the protein for the surface, close to the surface the mean force acting on the protein clearly varied linearly with the strength of the electric moment, such that a clear correlation between the latter and the protein orientation with respect to the surface could be established. Wild-type cutinase displayed the highest affinity for the charged surface amongst all proteins having the same total charge, even though it did not have the largest electric moment. © 1996 by John Wiley & Sons, Inc.  相似文献   

16.
To design a generic purification platform and to combine the advantages of fusion protein technology and matrix-assisted refolding, a peptide affinity medium was developed that binds inclusion body-derived Npro fusion proteins under chaotropic conditions. Proteins were expressed in Escherichia coli using an expression system comprising the autoprotease Npro from Pestivirus, or its engineered mutant called EDDIE, with C-terminally linked target proteins. Upon refolding, the autoprotease became active and cleaved off its fusion partner, forming an authentic N-terminus. Peptide ligands binding to the autoprotease at 4 M urea were screened from a combinatorial peptide library. A group of positive peptides were identified and further refined by mutational analysis. The best binders represent a common motif comprising positively charged and aromatic amino acids, which can be distributed in a random disposition. Mutational analysis showed that exchange of a single amino acid within the peptide ligand caused a total loss of binding activity. Functional affinity media comprising hexa- or octapeptides were synthesized using a 15-atom spacer with terminal sulfhydryl function and site-directed immobilization of peptides derivatized with iodoacetic anhydride. The peptide size was further reduced to dipeptides comprising only one positively charged and one aromatic amino acid. Based on this, affinity media were prepared by immobilization of a poly amino acid comprising lysine or arginine, and tryptophan, phenylalanine, or tyrosine, respectively, in certain ratios. Binding capacities were in the range of 7–15 mg protein mL−1 of medium, as could be shown for several EDDIE fusion proteins. An efficient protocol for autoproteolytic cleavage using an on-column refolding method was implemented.  相似文献   

17.
Predicting the fragmentation patterns of proteins would be beneficial for the reliable identification of intact proteins by mass spectrometry. However, the ability to accurately make such predictions remains elusive. An approach to predict the specific cleavage sites in whole proteins resulting from collision-induced dissociation by use of an improved electrostatic model for calculating the proton configurations of highly-charged protein ions is reported. Using ubiquitin, cytochrome c, lysozyme and β-lactoglobulin as prototypical proteins, this approach can be used to predict the fragmentation patterns of intact proteins. For sufficiently highly charged proteins, specific cleavages occur near the first low-basicity amino acid residues that are protonated with increasing charge state. Hybrid QM/QM′ (QM=quantum mechanics) and molecular dynamics (MD) simulations and energy-resolved collision-induced dissociation measurements indicated that the barrier to the specific dissociation of the protonated amide backbone bond is significantly lower than competitive charge remote fragmentation. Unlike highly charged peptides, the protons at low-basicity sites in highly charged protein ions can be confined to a limited sequence of low-basicity amino acid residues by electrostatic repulsion, which results in highly specific fragmentation near the site of protonation. This research suggests that the optimal charge states to form specific sequence ions of intact proteins in higher abundances than the use of less specific ion dissociation methods can be predicted a priori.  相似文献   

18.
The ability to control protein and cell positioning on a microscopic scale is crucial in many biomedical and bioengineering applications, such as tissue engineering and the development of biosensors. We propose here a novel, simple, and versatile method for the micropatterning of proteins. Micropatterned substrates are produced by the dewetting of a metastable polymer film on top of another polymer film. Selective adsorption, or micropatterning, of proteins can be achieved on such substrates by choosing pairs of polymers which differ in protein affinity. In this study, patterns were produced in bilayers of poly(methylmethacrylate) (PMMA) and polystyrene (PS), and of PMMA and octadecyltrichlorosilane (OTS). Fluorescence microscopy and atomic force microscopy (AFM) provide evidence that model proteins adsorb preferentially on isolated bio-adhesive (PS and OTS) micropatches in a protein-resistant (PMMA) matrix. "Inverse" protein patterns, containing non-adhesive (PMMA) islands in a protein-adhesive (PS) matrix can also be produced. Such micropatterned substrates could potentially be used in the development of biosensors and bioassays, and in the study of cell growth and motility.  相似文献   

19.
Using zirconium tetrabutoxide, diaminedecane, and diamineoctane as precursors, a templated hexagonal zirconia matrix is synthesized and characterized by X-ray diffractometry and scanning electron microscopy. The adsorption capacity of such a matrix toward Co(II), Ni(II), Cu(II), and Zn(II) from aqueous solutions is studied. The adsorption affinity of the synthesized hexagonal templated zirconia toward the cations is Cu(II)>Zn(II) >Ni(II)>Co(II). It is also verified that the adsorption of the cations follows a Langmuir and not a Freundlich isotherm. All obtained isotherms are of type I, according to the IUPAC classification. The observed adsorption affinity sequence can be explained by taking into account the velocity constant for the substitution of water molecules into the cation coordination spheres, as well as the Irving-Williams series.  相似文献   

20.
Silane-immobilized magnetic iron oxide particles were used as the assisting material in surface-assisted laser desorption/ionization (SALDI) mass spectrometric analysis. This approach can be used to analyze small proteins and peptides. The upper detectable mass range is approximately 16 kDa. The detection limit for peptides is about 20 fmol. Silanized iron oxide particles with negatively charged functionalities can also be used as the affinity probes to selectively trap oppositely charged species from sample solutions by adjusting the pH of the solution. A tryptic digest product of cytochrome C at a concentration as low as 10 nM can be enriched by the particles and directly analyzed by iron oxide SALDI MS without the need for elution steps. Affinity-based mass spectrometry using the bifunctional silanized magnetic iron oxide particles as the SALDI matrix and concentrating probe is demonstrated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号