首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the reactions of methane with the gold(III) complexes [AuClx(H2O)4− x ]3−x (x = 2, 3, or 4) was studied by the DFT/PBE method with the SBK basis set. High activation barriers obtained for the reactions of [AuCl4] and [Au(H2O)Cl3] with methane suggest these reactions cannot proceed under mild conditions. The reaction of the [Au(H2O)2Cl2]+ complex with methane has a rather low energy barrier and proceeds through the formation of an intermediate complex. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 191–201, February, 2006.  相似文献   

2.
Reaction of [AuCl(SMe2)] with NaL·H2O (L = ethyl(pyridine-4-yl methyl)dithiocarbamate (epdtc) or methyl(2-(pyridin-2-yl)ethyl)dithiocarbamate (mpdtc)) affords a series of neutral dinuclear gold(I) complexes bridged by each dithiocarbamate ligand, [Au(L)]2. The successive reaction of [Au(L)]2 with organic acids such as isophthalic acid (m-pa) and maleic acid (ma) produces 1:1 adducts, [Au(L)]2·(organic acid). The crystal structure of [Au(L)]2·(m-pa) is a 1D polymer formed via hydrogen bonds between the free pyridyl and the carboxylic acid moiety. For the dinuclear moiety, strong intradinuclear aurophilic interactions (Au(I)–Au(I) = 2.7783(8) Å and 2.7525(7) Å) exist, but interdinuclear interactions are weak (3.2551(8)–3.2733(8) Å). The dinuclear gold(I) complexes, [Au(epdtc)]2 and [Au(mpdtc)]2, show a bright luminescence at 562.5 and 552.0 nm in solid state, respectively, but their organic acid adducts, [Au(L)]2·(organic acid), have no luminescent properties. This dramatic difference in properties between the gold(I) complexes and their adducts may be ascribed to the weakness of the internuclear Au(I)–Au(I) interaction including crystal packing.  相似文献   

3.
The title compounds, (NH4)2[MnII(edta)(H2O)]·3H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)2[MnII(cydta)(H2O)]·4H2O (H4cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[MnII(Hdtpa)]·3.5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), were prepared; their compositions and structures were determined by elemental analysis and single-crystal X-ray diffraction technique. In these three complexes, the Mn2+ ions are all seven-coordinated and have a pseudomonocapped trigonal prismatic configuration. All the three complexes crystallize in triclinic system in P-1 space group. Crystal data: (NH4)2[MnII(edta)(H2O)]·3H2O complex, a = 8.774(3) ?, b = 9.007(3) ?, c = 13.483(4) ?, α = 80.095(4)°, β = 80.708(4)°, γ = 68.770(4)°, V = 972.6(5) ?3, Z = 2, D c = 1.541 g/cm3, μ = 0.745 mm−1, R = 0.033 and wR = 0.099 for 3406 observed reflections with I ≥ 2σ(I); (NH4)2[MnII(cydta)(H2O)]·4H2O complex, a = 8.9720(18) ?, b = 9.4380(19) ?, c = 14.931(3) ?, α = 76.99(3)°, β = 83.27(3)°, γ = 75.62(3)°, V = 1190.8(4)?3, Z = 2, D c = 1.426 g/cm3, μ = 0.625 mm−1, R = 0.061 and wR = 0.197 for 3240 observed reflections with I ≥ 2σ(I); K2[MnII(Hdtpa)]·3.5H2O complex, a = 8.672(3) ?, b = 9.059(3) ?, c = 15.074(6) ?, α = 95.813(6)°, β = 96.665(6)°, γ = 99.212(6)°, V = 1152.4(7) ?3, Z = 2, D c = 1.687 g/cm3, μ = 1.006 mm−1, R = 0.037 and wR = 0.090 for 4654 observed reflections with I ≥ 2σ(I). Original Russian Text Copyright ? 2008 by X. F. Wang, J. Gao, J. Wang, Zh. H. Zhang, Y. F. Wang, L. J. Chen, W. Sun, and X. D. Zhang The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 753–759, July–August, 2008.  相似文献   

4.
New cobalt trans-dioximate complexes with isoniconinamide have been synthesized: [CoII(DmgH)2(Inia)2] (I), [CoIII(DmgH)2(Inia)2][PF6] · 1.5H2O (II), [CoIII(NioxH)2 (Inia)2][PF6] · H2O · CH3OH (III), and [CoIIICl(DmgH)2(Inia)] · H2O (IV), where DmgH and NioxH are the dimeth-ylglyoxime and 1,2-cyclohexanedionedioxime monoanions, respectively; Inia is the isonicotinamide molecule. The structures of compounds I–IV have been determined by X-ray crystallography. In I–IV, Co(II) or Co(III) has an octahedral environment with the pseudomacrocyclic (DioxH)2 moiety (DioxH is the dioximate monoanion) in the equatorial plane. The latter is stabilized by O-H…O hydrogen bonds. The isonicotinamide molecules in all four complexes are monodentately bound to the metal ion through the heterocyclic nitrogen atom.  相似文献   

5.
Syntheses and structure determination of the YIII complexes with ethylenediaminetetraacetic acid (H4edta) and trans-1,2-cyclohexanediaminetetraacetic acid (H4cydta) are reported. The crystal and molecular structures of the complexes, as well as their molecular formulas and compositions, were determined by single-crystal X-ray structure analyses, NMR, IR, thermogravimetric measurements, and elementary analyses. The crystal of the Na[YIII(edta)(H2O)3]·5H2O complex belongs to the orthorhombic crystal system and space group Fdd2. The crystal data are as follows: a = 19.355(5) Å, b = 35.431(11) Å, c = 12.122(3) Å, V = 8313(4) Å3, Z = 16, M = 544.23, Dc = 1.739 g·cm−3, μ = 2.908 mm−1 and F(000) = 4480. The final R and Rw are 0.0483 and 0.1172 for 3284 (I > 2σ(I)) unique reflections, R and Rw are 0.0678 and 0.1440 for all 8499 reflections, respectively. The YIIIN2O7 part in the [YIII(edta)(H2O)3] complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure, in which the six coordinated atoms (two N and four O) from the edta ligand and three water molecules are coordinated to the central YIII ion directly. The crystal of the Na[YIII(cydta)(H2O)2]·5H2O complex belongs to the triclinic crystal system and space group. The crystal data are as follows: a = 8.405(2) Å, b = 9.970(2) Å, c = 14.763(4) Å, α = 88.538(4)°, β = 76.193(4)°, γ = 88.100(4)°, V = 1200.6(5) Å 3, Z = 2, M = 580.31, Dc = 1.605 g·cm−3, μ = 2.519 mm−1 and F(000) = 600. The final R and Rw are 0.0381 and 0.0911 for 4198 (I > 2σ(I)) unique reflections, R and Rw are 0.0530 and 0.1041 for all 6186 reflections, respectively. The YIIIN2O6 part in the [YIII(cydta)(H2O)2] complex anion has a pseudo square antiprismatic eight-coordinate structure in which the six coordinated atoms (two N and four O) from the cydta ligand and two water molecules are coordinated to the central YIII ion directly. Original Russian Text Copyright ? 2005 by J. Wang, Y. Wang, Zh. H. Zhang, X. D. Zhang, J. Tong, X. Zh. Liu, X. Y. Liu, Y. Zhang, and Zh. J. Pan __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 928–938, September–October, 2005.  相似文献   

6.
Crystalline substances formed in the (MF)1−x −(M′F) x −SbF3−H2O systems (M, M′=Na, K, Rb, Cs, and NH4;x=0 to 1) were investigated by121,123Sb NQR spectroscopy at 77 K. The formation of individual SbIII complexes NaCs3Sb4F16·H2O and NaKSbF5·1.5H2O, and statistically disordered mixed crystals M1−x −M′ x −SbF4 (M, M′=K, Rb, Cs, and NH4) was established. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 109–112, January, 1999.  相似文献   

7.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

8.
Two new neodymium complexes, [Nd2(abglyH)6(2,2′-bipy)2(H2O)2] · 4H2O 1 and {[Nd(abglyH)3(H2O)2] · (4,4′-bipy) · 7H2O}n 2 (abglyH2 = N-P-acetamidobenzenesulfonyl-glycine acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been synthesized and their structures have been measured by X-ray crystallography. In 1, nine-coordinated Nd(III) ions are bridged by two synsyn bidentate and two tridentate bridging carboxylate groups from four different abglyH anions to form dinuclear motifs, which are further connected into a 3-D supramolecular framework via hydrogen bonds between the binuclear motifs and the uncoordinated water molecules. In 2, eight-coordinated Nd(III) ions are linked by six carboxylate groups adopting a synsyn bidentate bridging fashion to form a 1-D inorganic–organic alternating linear chain. These polymeric chains generate microchannels extending along the a direction, and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the 3-D supramolecular network via hydrogen bonds. At the same time, π–π stacking interactions between benzene rings from abglyH anions also play an important role in stabilizing the network.  相似文献   

9.
Three binuclear complexes, (VO)2(L)OMe (1), Co2(L)OEt·3/2H2O (2) and Zn2(L)OMe·H2O (3) have been prepared, where H3L is the binucleating ligand, 2,6-diformyl-4-methylphenol di(benzoylhydrazone). The magnetic susceptibilities of (1) and (2) were measured over the 4.2–300 K range and the observed data were fitted to the Bleaney-Bowers equation by the least-squares method, giving the exchange integral 2J = −358.5cm−1 for (1) and 2J = −6.6cm−1 for (2). This procedure indicates the existence of an antiferromagnetic interaction between the metals. TMC 2699  相似文献   

10.
The peculiarities of dissociative electron capture by 20-hydroxyecdysone molecules with the formation of fragment negative ions were studied. In the region of high electron energies (5–10 eV), processes of skeleton bond rupture are accompanied by the elimination of H2O and H2 molecules. In the region of thermal energies of electrons (≈0 eV), the mass spectrum is formed mainly by the [M−nH2O].− (n=1–3) and [M−H2nH2O].− (n=0−3) ions that are generated exclusively by the rearrangement. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 709–712, April, 2000.  相似文献   

11.
Double complex salts [Au(C4H13N3)Cl][MCl6nH2O (M = Ir, Pt; n = 0–2) were synthesized. According to X-ray diffraction data, compounds with n = 1.5 are isostructural; the crystal structure is composed of the complex cations [Au(dien)Cl]2+ (dien is diethylenetriamine), the complex anions [MCl6]2−, and water molecules of crystallization. Thermolysis of the double complex salts under hydrogen and helium was studied. The formation of nonequilibrium solid solutions based on Ir in the Au-Ir system and based on Pt in the Au-Pt system was demonstrated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 416–421, March, 2006.  相似文献   

12.
A new series of dioxouranium(VI) complexes of a potential ONNO tetradentate donor 2-aminobenzoylhydrazone of butane-2,3-dione (L1H2) have been synthesized. At pH 2·5–4·0, the donor (L1H2) reacts in the keto form and complexes of the type [UO2(L1H2)(X)2] (X=Cl, Br, NO 3 , NCS, ClO 4 , CH3COO, 1/2SO 4 2− ) are obtained. At higher pH (6·5–7), the complex of the enol form having the formula [UO2(L1)(H2O)] has been isolated. On reaction with a monodentate lewis base (B), both types of complexes yield adducts of the type [UO2(L1)(B)]. All these complexes have been characterised adequately by elemental analyses and other standard physicochemical techniques. Location of the bonding sites of the donor molecule around the uranyl ion, status of the uranium-oxygen bond and the probable structure of the complexes have also been discussed.  相似文献   

13.
Crystals of novel heterepoly complexes (HPC) Na0.5Cs2 − x [H0.5 − x M x II XIII(OH)6Mo6O18] · 7−8H2O (MII = Fe, Mn; XIII = Cr, Al) are synthesized. Crystal structures of the complexes Na0.5Cs2 − x [H0.5 − x FexCr(OH)6Mo6O18] · 7H2O (I) (x = 0.19) and Na0.5Cs2 − x [H0.5 − x MnxAl(OH)6Mo6O18] · 8H2O (II) (x = 0.22) are determined (space group Pbcn, Z = 8, a = 23.023(4) Å, b = 22.064(4) Å, c = 11.606(3) Å, V = 5895.66 Å3 for I and a = 22.972(9) Å, b = 22.002(8) Å, c = 11.543(5) Å, V = 5834.18 Å3 for II, respectively). The [XIII(OH)6Mo6O18]3− ligands were found to be coordinated in monodentate fashion to M atoms due to the participation of a terminal O atom of the cis-MoO2 group in coordination with the Fe and Mn atoms, which was confirmed by IR data. __________ Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 9, 2005, pp. 663–676. Original Russian Text Copyright ? 2005 by Gavrilova, Molchanov.  相似文献   

14.
The solid-state coordination reaction: Nd(NO3)3·6H2O(s)+4Ala(s) → Nd(Ala)4(NO3)3·H2O(s)+5H2O(l) and Er(NO3)3·6H2O(s)+4Ala(s) → Er(Ala)4(NO3)3·H2O(s)+5H2O(l) have been studied by classical solution calorimetry. The molar dissolution enthalpies of the reactants and the products in 2 mol L–1 HCl solvent of these two solid-solid coordination reactions have been measured using a calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpies of [Nd(Ala)4(NO3)3·H2O, s, 298.2 K] and[Er(Ala)4(NO3)3·H2O, s,298.2 K] at 298.2 K have been determined to be Δf H m 0 [Nd(Ala)4(NO3)3·H2O,s, 298.2 K]=–3867.2 kJ mol–1, and Δf H m 0 [Er(Ala)4(NO3)3·H2O, s, 298.2 K]=–3821.5 kJ mol–1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y··· H2CZ (Z = O, S, Se) and Y···H2CZ2 (Z = F, Cl, Br) (Y = Cl, Br) at the MP2/6-311++G(d,p) and MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent blue-shifted H-bonds Y···H-C, and that the interaction energies and blue shifts are large, the energy of each Y···H-C H-bond is 15–27 kJ/mol, and Δr(CH) = −0.1 − −0.5 pm and Δv(CH) = 30 − 80 cm−1. The natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hyperconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of electron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.  相似文献   

16.
The reaction of [O(AuPPh3)3]+BF4 with a Li, K derivative ofo-cresol followed by the interaction of the reaction product with CO2 gave (triphenylphosphine)gold acetate. The reaction of ClAuPPh3 witho-LiC6H4SLi afforded (triphenylphosphine)gold thiophenoxide. According to the data of X-ray structural analysis, the latter occurs as a dimer formed through an intermolecular secondary Au…Au bond. The reaction of this complex with diazomethane was accompanied by insertion of carbene into the Au−S bond to form a new gold complex, PhSCH2AuPPh3. The reactions with PPh3Au+BF4 or HBF4 yielded a new tetranuclear gold thiocluster, {[PhS(AuPPh3)2]2+(BF4 )}2, which involves Au…Au bonds that differ in strength. The structures of the compounds obtained were established by X-ray structural analysis1H and31P NMR spectroscopy, and FAB mass spectrometry. For Part 4, seeIzv. Akad. Nauk, Ser. Khim., 1997, 2244 [Russ. Chem. Bull., 1997,46 2127 (Engl. Transl)]. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2 pp. 350–355, February, 1998.  相似文献   

17.
Complex [FeL2(NCS)2]·H2O (L = 3,5-di(pyrimidin-2-yl)-4H-1,2,4-triazol-4-amine) was prepared as the first example of complex compounds of transition metals with 3,5-di(pyrimidin-2-yl)-4H-1,2,4-triazol-4-amines. The coordination core of the iron atom is a distorted octahedron FeN6. In the range 80–300 K the complex is high-spin, μeff ∼ 5.3 MB. The parameter of the crystal field splitting, 10Dq, for [FeL2(NCS)2]·H2O is ∼10800 cm−1.  相似文献   

18.
Summary Two novel charge-transfer (CT) heteropoly complexes, (C8H12N2)5H7PMo12O40 (1) and (C8H12N2)3H3-PMo12O40·5H2O (2), prepared by reacting p-Me2NC6H4NH2 with the four-electron heteropoly blue H7PMo12O40·12H2O and heteropoly acid H3PMo12O40· xH2O, respectively, were characterized by elemental analysis, and u.v., i.r., XPS and e.s.r. spectroscopies. A sizable electron-transfer interaction occurs within the product molecules and the heteropoly anions retain their Keggin structure. Their third-order optical non-linearity coefficients were measured using the Z-scan technique at a concentration of 4.68 × 10−6 mol dm−3 for (1) and 2.79 × 10−6 mol dm−3 for (2), with I 0 = 2.38 × 1013 w m−2 and λ = 532nm. The |χ(3)| for (1) is 2.61 × 10−10 esu and |χ(3)| for (2) is 1.05 × 10−10 esu.  相似文献   

19.
Crystallochemical features of anion (Cl, Br, I, NO 3 , CO 3 2− , SO 4 2− ) varieties of the aluminum and lithium hydroxide were studied by using the aluminum and lithium binary hydroxide (LiOH·2Al(OH)3·2H2O) model in space group P63cm with the tetrahedral coordination of lithium. Atomic coordinates corresponding to the lowered lattice symmetry were refined. Institute of Solid State Chemistry and Processing of Mineral Raw Materials, Siberian Branch, Russian Academy of Sciences. Novosibirsk State Pedagogical University. Translated fromZhurnal Struktumoi Khimii, Vol. 35, No. 5, pp. 158–170, September–October, 1994. Translated by T. Yudanova  相似文献   

20.
The bimetallic complex of Ni2Co(TTHA)·12H2O (TTHA = triethylene tetraminehexaacetic acid) was synthesized and characterized structurally and magnetically. The title complex crystallizes in the triclinic space group P ī with a = 0.7316(2), b = 0.8624(2), c = 1.5041(4) nm; α = 73.38(2), β = 83.97(2), γ = 70.50(2)°. The crystal structure is built up of [Ni2(TTHA)(H2O)2]2−, Co(H2O)62+ and water molecules. The variable magnetic measurement shows that there is strong antiferromagnetic interaction between two Ni(II) ions in [Ni2(TTHA) (H2O)2]2− with J Ni−Ni = −141.64 cm−1, g Ni = 2.21 and that the constant of spin-orbit coupling of Co(II) ion is −134.8 cm−1. __________ Translated from Acta Scientiarum Naturalium Universitatis Nankaiensis, 2007, 40(1): 6–10 [译自: 南开大学学报(自然科学版)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号