首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen H  Li X  Wan M 《Ultrasonics》2006,44(Z1):e427-e429
In many therapeutic applications of high-intensity focused ultrasound (HIFU) the appearance of cavitation bubbles is unavoidable, whereas the dynamics of the bubbles induced by HIFU have not been clarified. The objective of the present work is to observe the inception process of cavitation bubble clouds generated by HIFU transducer in water using high-speed photography. Sequential images captured within 600 micros after the onset of ultrasound transmission show the dynamics of cavitation bubbles' generation, growth, deformation, expansion and collapse in the focal region. However, when the observation time is narrowed to the initial 145 micros, both the still and streak images reveal that the cavitation bubbles astonishingly stay stable in the focal region for at least 60 micros. The results imply that through adjusting the HIFU exposure time while other physical parameters are appropriately chosen, it might be possible to control the generation of stable cavitation bubbles locally in the focal region.  相似文献   

2.
Acoustic field distribution was determined in HIFU sonoreactors as well as localization of cavitation activity by crossing different techniques: modeling, hydrophone measurements, laser tomography and SCL measurements. Particular care was taken with quantification of this last technique by pixels or photon counting. Cavitation bubbles generated by HIFU are mainly located on the outer layer of the propagation cone in the post-focal zone. Greatest acoustic activity is not located at the geometrical focal, but corresponds to a high concentration of bubbles zone. On the contrary, the main sonochemical activity shifts slightly toward the transducer, whereas quenching of inertial cavitation is observed directly at the focal. Finally, SCL thresholds have been determined.  相似文献   

3.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   

4.
The relationship between the cavitation and acoustic peak negative pressure in the high-intensity focused ultrasound(HIFU)Held is analyzed in water and tissue phantom.The peak negative pressure at the focus is determined by a hybrid approach combining the measurement with the simulation.The spheroidal beam equation is utilized to describe the nonlinear acoustic propagation.The waveform at the focus is measured by a fiber optic probe hydrophone in water.The relationship between the source pressure amplitude and the excitation voltage is determined by fitting the measured ratio of the second harmonic to the fundamental component at the focus,based on the model simulation.Then the focal negative pressure is calculated for arbitrary voltage excitation in water and tissue phantom.A portable B-mode ultrasound scanner is applied to monitor HIFU-induced cavitation in real time,and a passive cavitation detection(PCD)system is used to acquire the bubble scattering signals in the HIFU focal volume for the cavitation quantification.The results show that:(1)unstable cavitation starts to appear in degassed water when the peak negative pressure of HIFU signals reaches 13.5 MPa;and(2)the cavitation activity can be detected in tissue phantom by B-mode images and in the PCD system with HIFU peak negative pressures of 9.0 MPa and 7.8 MPa,respectively,which suggests that real-time B-mode images could be used to monitor the cavitation activity in two dimensions,while PCD systems are more sensitive to detect scattering and emission signals from cavitation bubbles.  相似文献   

5.
A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration.  相似文献   

6.
脉冲超声激励下SonoVue微泡的瞬态空化特性   总被引:1,自引:0,他引:1       下载免费PDF全文
林玉童  秦鹏 《声学学报》2018,43(2):202-208
将SonoVue微泡从临床疾病诊断拓展至治疗引起了诸多研究人员的兴趣。为了平衡治疗效率和生物安全性,深入理解声学参数和SonoVue微泡瞬态空化的关系至关重要。本研究自行制备仿体容器放置SonoVue微泡,使用1 MHz发射换能器激励其产生空化效应,另一个7.5 MHz的聚焦换能器接收声信号,经放大及高速数据采集后送上位机处理。通过深入分析信号的时频域特征,我们提出以宽带信号的能量及其随时间变化曲线的半高宽来表征瞬态空化的剂量(ICD)和相对持续时间(ICP),并确定:瞬态空化的发生和ICD依赖于峰值负声压,但ICP随峰值负声压的增加而减小;脉冲重复频率和脉冲持续时间都和ICD及ICP正相关;且脉冲持续时间的影响较大。这些结果有望为SonoVue微泡的治疗应用提供理论支持。   相似文献   

7.
This paper presented an ultrasound line-by-line scanning method of spatial–temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin–agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial–temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.  相似文献   

8.
范鹏飞  于洁  杨鑫  屠娟  郭霞生  黄品同  章东 《中国物理 B》2017,26(5):54301-054301
High intensity focused ultrasound(HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile,a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFUinduced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity.  相似文献   

9.
In this paper new observations of a laser-generated cavitation bubble interacting with an inertial boundary are presented. Employing schlieren photography techniques and a thin film transducer placed on the surface of the boundary, the pressure stresses induced in the solid boundary and the surrounding fluid by collapsing bubbles, created very close to the solid surface, are experimentally measured. Liquid jet development, shock wave emission, and "splash" phenomena are identified. For different creation sites close to the boundary, the relevance of each of these phenomena with respect to potentially damaging pressure stresses in the boundary is speculated on.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(5):1745-1751
Background: Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs’ vaporization threshold, there were little reports on their cavitation and thermal effects.Object: In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters.Methods: Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion.Results: Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light.  相似文献   

11.
Cavitation bubble clouds in the focal region of HIFU play important roles in therapeutic applications of HIFU. Temporal evolution and spatial distribution of cavitation bubble clouds generated in the focal region of a 1.2 MHz single element concave HIFU transducer in water are investigated by high-speed photography. It is found that during the initial 600 micro s insonation cavitation bubble clouds organize to the "screw-like structure" or "cap-like structure". The screw-like structure is characterized by a nearly fixed tip at the geometrical focus of the HIFU transducer, and the cap-like structure is marked by a dent formed in the direction of ultrasound transmission. After 600 micro s, another two structures are recorded - "streamer structure" and "cluster structure". The streamer structure is also featured by a nearly fixed bottom position at the focus, while the cluster structure is distinguished by agglomerations of bubbles around the focus.  相似文献   

12.
The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5 kHz and 100 kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5 W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5 μs) and PRF to 10 kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.  相似文献   

13.
Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles.  相似文献   

14.
The feasibility that temperature field measurements in vitro as an alternative way to characterize the high intensity focused ultrasound (HIFU) field used in therapeutic applications has been explored in a phantom study. Thermocouples (copper-constantan, diameter 0.125 mm) are embedded in a phantom filled with tissue mimicking material that simulates the thermal and acoustic properties of soft-tissue. The temperature rises as a function of ultrasound exposure time near the focus of a HIFU transducer (1.1 MHz, active radius a = 32 mm, geometric focal length = 62 mm) of various acoustic powers up to 30 W are measured and compared with predicted values using a simple nonlinear Gaussian model. The experimental results can be explained well by the model if no acoustic cavitation takes place. When the acoustic power become higher (>5 W) and the local temperature elevation >15 °C and the local temperature is >40 °C at the focal point, cavitation vapor bubbles appear. The presence of the cavitation bubbles may increase the temperature rise rate initially. The bubble aggregates may form along the beam axis under sonication and then eventually makes the temperature elevation reach a saturated value. When acoustic cavitation occurs, the bubble-assisted enhancement of the initial temperature rise (exposure time t < 2 s) can still be predicted by the theory.  相似文献   

15.
The classical "Bio Heat Transfer Equation (BHTE)" model is adapted to take into account the effects of oscillating microbubbles that occur naturally in the tissue during high-intensity focused ultrasound (HIFU) treatment. First, the Gilmore-Akulichev model is used to quantify the acoustic pressure scattered by microbubbles submitted to HIFU. Because this scattered pressure is not monochromatic, the concept of harmonic attenuation is introduced and a global attenuation coefficient is estimated for bubble-filled tissues. The first results show that this global attenuation coefficient varies significantly with respect to several parameters such as the frequency and the density of microbubbles in the medium, but also with respect to the incident acoustic pressure which thus becomes a transcendental function. Under these conditions, a layer-by-layer modeling, in the direction of propagation, is proposed to calculate the ultrasonic beam. Finally, the BHTE is solved and the HIFU-induced lesions are estimated by the calculation of the thermal dose. Using this model, it can be observed first that, when the firing power increases, the lesion develops clearly in the direction of the transducer, with a shape agreeing with in vivo experimentation. Next, it is observed that the lesion can be significantly modified in size and position, if an interface (skin or inner wall) is simulated as a zone with multiple cavitation nuclei. With a firing power increase, it is also shown how a secondary lesion can appear at the interface and how, beyond a certain threshold, this lesion develops at the main lesion expense. Finally, a better in-depth homogeneity of lesions is observed when the acoustic frequency of HIFU is increased.  相似文献   

16.
The acoustic fields of a high intensity focused ultrasound (HIFU) transducer operating either at its fundamental (1.1 MHz) or third harmonic (3.3 MHz) frequency were measured by a fiber optic probe hydrophone (FOPH). At 1.1 MHz when the electric power applied to the transducer was increased from 1.6 to 125 W, the peak positive/negative pressures at the focus were measured to be p(+) = 1.7-23.3 MPa and p(-) = -1.2(-) -10.0 MPa. The corresponding spatial-peak pulse-average (I(SPPA)) and spatial-average pulse-average (I(SAPA)) intensities were I(SPPA) =77-6000 W/cm2 and I(SAPA) = 35-4365 W/cm2. Nonlinear propagation with harmonics generation was dominant at high intensities, leading to a reduced -6 dB beam size (L x W) of the compressional wave (11.5 x 1.8-8.8 1.04 mm) but an increased beam size of the rarefactional wave (12.5 x 1.6-13.2 x 2.0 mm). Enhancement ratio of absorbed power density in water increased from 1.0 to 3.0. In comparison, the HIFU transducer working at 3.3 MHz produced higher peak pressures (p(+) = 3.0-35.1 MPa and p(-) = -2.5(-) - 13.8 MPa) with smaller beam size (0.5 x 4 mm). Overall, FOPH was found to be a convenient and reliable tool for HIFU exposimetry measurement.  相似文献   

17.
Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of –28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.  相似文献   

18.
This letter reports on the use of frequency sweeps to probe acoustic cavitation activity generated by high-intensity focused ultrasound (HIFU). Unprecedented enhancement and quenching of HIFU cavitation activity were observed when short frequency sweep gaps were applied in negative and positive directions, respectively. It was revealed that irrespective of the frequency gap, it is the direction and frequency sweep rate that govern the cavitation activity. These effects are related to the response of bubbles generated by the starting frequency to the direction of the frequency sweep, and the influence of the sweep rate on growth and coalescence of bubbles, which in turn affects the active bubble population. These findings are relevant for the use of HIFU in chemical and therapeutic applications, where greater control of cavitation bubble population is critical.  相似文献   

19.
In a previous study, we found that cavitation bubbles cause the ultrasonic destruction of microcapsules containing oil in a shell made of melamine resin. The cavitation bubbles can be smaller or larger than the resonance size; smaller bubbles cause Rayleigh contraction, whereas larger bubbles are not involved in the sonochemical reaction. The activity in and around the bubble (e.g., shear stress, shock wave, microjet, sonochemical reaction, and sonoluminescence) varies substantially depending on the bubble size. In this study, we investigated the mechanism of the ultrasonic destruction of microcapsules by examining the correlations between frequency and microcapsule destruction rate and between microcapsule size and cavitation bubble size. We evaluated the bubbles using multibubble sonoluminescence and the bubble size was changed by adding a surfactant to the microcapsule suspension. The microcapsule destruction was frequency dependent. The main cause of microcapsule destruction was identified as mechanical resonance, although the relationship between bubble size and microcapsule size suggested that bubbles smaller than or equal to the microcapsule size may also destroy microcapsules by applying shear stress locally.  相似文献   

20.
In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号