首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee HL  Chen SC 《Talanta》2004,64(1):210-216
Microchip capillary electrophoresis (μCE) with amperometric detection at Cu electrode benefited fast separation and direct detection of carbohydrates. The working electrode of 50-μm Cu wire attached nearly against the channel outlet—4 μm, where it benefited collecting detection current and suppressing overwhelming noise. The use of alkaline medium was essential to separating and detecting carbohydrates, which dissociated into the sensitive alcolate anions. The 10-cm serpentine chip, though lengthening the migration time, it provided better efficiency. Sucrose, cellobiose, glucose, and fructose migrated from the outlet in 400 s +2000 V. The linear calibration plots ranging from 10 to 1000 μM with regression coefficients better than 0.996 were obtained. The injection-to-injection reproducibility of 1.24% (n=7) for glucose in peak current and 0.6% for migration times were excellent. The detection limit was low, down to 2.3 μM for glucose (S/N=3) or 27.6 attomole in mass detection.  相似文献   

2.
The aggregation and adhesion of bacterial cells is a serious disadvantage for electrophoretic separations of bacteria. In this study, lipid-based liquid crystalline nanoparticles were used as a pseudostationary phase to minimise the bacterial aggregation and adsorption to the inner walls of microchannels. Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Lactobacillus rhamnosus were selected as analytes and were separated by microchip electrophoresis (MCE) with laser-induced fluorescence (LIF) detection using 4.5 mM tris(hydroxymethyl) aminomethane (TRIS)-4.5 mM boric acid-0.1 mM ethylenediaminetetraacetate (EDTA) (TBE) containing poly(ethylene oxide) (PEO) and lipid-based nanoparticles as the running buffer. The mechanism of lipid-based nanoparticles affecting bacterial adhesion and aggregation was discussed and supported by zeta potential experiments. Under the optimal conditions, the three species of bacteria were identified with patterned peaks. This proposed MCE method using lipid-based nanoparticles as running buffer additives was also used to analyse a real yogurt sample, and valuable bacterial information was obtained by the electropherograms.  相似文献   

3.
A novel microchip-based single nucleotide polymorphism (SNP) screening system has been developed. The system utilizes capillary gel electrophoresis (CGE) with electrochemical detection in a chip-based format to accomplish rapid scoring of a mock SNP site. The accuracy of the thermostable polymerase and the advantages of coupling this technique to microfluidics are demonstrated. An electrochemically labeled chain terminator is used in the single base extension (SBE) reaction, in which the terminator is incorporated only when its Watson-Crick complementary base is present at the mock SNP site. The resulting electrochemically active extension product is subsequently separated from any excess terminator by CGE and detected by sinusoidal voltammetry. Although no attempts at optimization have been made, the analysis is performed in less than 4 min. The technique presented could lead to a fast, simple, and cost effective SNP scoring system.  相似文献   

4.
Microchip electrophoresis (ME) with electrochemical detection was used to monitor nitric oxide (NO) production from diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO) and 1-(hydroxyl-NNO-azoxy)-L-proline disodium salt (PROLI/NO). NO was generated through acid hydrolysis of these NONOate salts. The products of acid hydrolysis were introduced into a 5-cm separation channel using gated injection. The separation was accomplished using reverse polarity and a background electrolyte consisting of 10 mM boric acid and 2 mM tetradecyltrimethylammonium bromide, pH 11. Electrochemical detection was performed using an isolated potentiostat in an in-channel configuration. Potentials applied to the working electrode, typically higher than +1.0 V vs. Ag/AgCl, allowed the direct detection of nitrite, NO, DEA/NO, and PROLI/NO. Baseline resolution was achieved for the separation of PROLI/NO and NO while resolution between DEA/NO and NO was poor (1.0 ± 0.2). Nitrite was present in all samples tested.  相似文献   

5.
A microchip capillary-electrophoresis protocol for rapid and effective measurements of food-related phenolic acids (including chlorogenic, gentisic, ferulic, and vanillic acids) is described. Relevant parameters of the chip separation and amperometric detection are examined and optimized. Under optimum conditions, the analytes could be separated and detected in a 15 mM borate buffer (pH 9.5, with 10% of methanol) within 300 s using a separation voltage of 2000 V and a detection voltage of +1.0 V. Linear calibration plots are observed for micromolar concentrations of the phenolic acid compounds. The negligible sample volumes used in the microchip procedure obviates surface fouling common to amperometric measurements of phenolic compounds. The new microchip protocol offers great promise for a wide range of food applications requiring fast measurements and negligible sample consumption. An application on a commercial red wine was performed with minimal sample preparation and promising results.  相似文献   

6.
Hebert NE  Kuhr WG  Brazill SA 《Electrophoresis》2002,23(21):3750-3759
The development of a microchip electrophoresis system involving integrated frequency based electrochemical detection is described. The use of poly(dimethylsiloxane) (PDMS) as the channel substrate greatly simplifies the fabrication process while decreasing cost and time consumption. Characterization of this system is accomplished through the detection of native carbohydrates at planar copper electrodes. Various photolithographic techniques are explored in the optimization of electrode area. Separation efficiency of 1 x 10(5) theoretical plates per meter is demonstrated. Sinusoidal voltammetry utilizes information in the frequency domain to achieve sensitive detection through either of two approaches, maximization of signal or minimization of noise. Mass detection limits (S/N = 3) of less than 200 amol have been accomplished for glucose and sucrose. Sinusoidal voltammetry also facilitated the selective isolation of an analyte signal from a pair of chromatographically unresolved species through the use of phase discrimination.  相似文献   

7.
Huang Y  Zhao S  Shi M  Liu J  Liang H 《Electrophoresis》2012,33(7):1198-1204
A facile and universal strategy for multiplexed immunoassay is proposed. The strategy is based on microchip electrophoresis (MCE) coupled with on-line magnetic separation and chemiluminescence (CL) detection. The system consisted of a microchip, an electromagnet, and a photomultiplier. The realization of multiplexed immunoassay protocol involves sampling magnetic nanoparticles (MNPs) labeled antibodies, N-(4-aminobutyl)-N-ethyl-isoluminol (ABEI) labeled antigens and free antigens in the precolumn reactor, on-line immunoreaction, capturing the MNPs-immunocomplexes, and the separation of unconjugated ABEI-labeled antigens. After on-line magnetic separation, the free ABEI-labeled antigens were transported into the separation channel, and mixed with hydrogen peroxide (H(2) O(2) ) in the presence of horseradish peroxidase in the postcolumn reactor, and producing CL emission. Using this arrangement, multiple analytes could be measured simultaneously by performing the technical operations for a single assay. As a proof-of-concept, the multiplexed immunoassay was evaluated for the simultaneous determination of five model analytes (i.e. hydrocortisone, corticosterone, digoxin, testosterone, and estriol). The results exhibited excellent precision and sensitivity, the relative standard deviations for nine times detection were lower than 4.7% for all the five components, and the detection limits of five analytes were in the range of 3.6-4.9 nM. The MCE system was validated using two human serum-based control samples containing five analytes.  相似文献   

8.
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.  相似文献   

9.
Pathogenic bacteria pose a global threat to public health and attract considerable attention in terms of food safety. Rapid and highly sensitive strategies for detecting pathogenic bacteria must be urgently developed to ensure food safety and public health. Microchips offer significant advantages for pathogenic bacterial detection in terms of speed and sensitivity compared with those of traditional techniques. Microfluidic devices, in particular, have attracted significant attention for the dete...  相似文献   

10.
We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.  相似文献   

11.
Microchip capillary electrophoresis (CE) coupled with a boron-doped diamond (BDD) electrode has been employed for the separation and detection of several purines and purine-containing compounds. The BDD end-channel amperometric detector offers favorable signal-to-noise (S/N) characteristics at the high detection potential (+ 1.3 V) essential for detecting purine-related compounds. Factors influencing the separation and detection processes were examined and optimized. Five purines (guanine, hypoxanthine, guanosine, xanthine, and uric acid) have been separated within 6 min at a separation voltage of 1000V using a borate/phosphate run buffer (pH 8.2). Linear calibration plots are observed for micromolar concentrations of the purine compounds. Good stability and reproducibility (R.S.D. < 5%) are obtained reflecting the minimal adsorption of purines at the BDD surface. Applicability for the detection of nucleosides, nucleotides, and oligonucleotides is illustrated. The new microchip protocol offers great promise for a wide range of bioanalytical applications involving assays of purines and purine-containing compounds.  相似文献   

12.
A method based on microchip electrophoresis (MCE) with chemiluminescence (CL) detection was developed for the determination of ascorbic acid (AA) and amino acids including tryptophan (Trp), glycine (Gly) and alanine (Ala) present in single cells. Cell injection, loading, lysing, electrophoretic separation and CL detection were integrated onto a simple cross microfluidic chip. A single cell was loaded in the cross intersection by electrophoretic means through applying a set of potentials at the reservoirs. The docked cell was lysed rapidly under a direct electric field. The intracellular contents were MCE separated within 130 s. CL detection was based on the enhancing effects of AA and amino acids on the CL reaction of luminol with K3[Fe(CN)6]. Rat hepatocytes were prepared and analyzed as the test cellular model. The average intracellular contents of AA, Trp, Gly and Ala in single rat hepatocytes were found to be 38.3, 5.15, 3.78 and 3.84 fmol (n = 12), respectively.  相似文献   

13.
The detection and removal of bacteria, such as E. coli in aqueous environments by using safe and readily available means is of high importance. Here we report on the synthesis of nanodiamonds (ND) covalently modified with specific carbohydrates (glyco-ND) for the precipitation of type 1 fimbriated uropathogenic E. coli in solution by mechanically stable agglutination. The surface of the diamond nanoparticles was modified by using a Diels-Alder reaction followed by the covalent grafting of the respective glycosides. The resulting glyco-ND samples are fully dispersible in aqueous media and show a surface loading of typically 0.1 mmol g(-1). To probe the adhesive properties of various ND samples we have developed a new sandwich assay employing layers of two bacterial strains in an array format. Agglutination experiments in solution were used to distinguish unspecific interactions of glyco-ND with bacteria from specific ones. Two types of precipitates in solution were observed and characterized in detail by light and electron microscopy. Only by specific interactions mechanically stable agglutinates were formed. Bacteria could be removed from water by filtration of these stable agglutinates through 10 μm pore-size filters and the ND conjugate could eventually be recovered by addition of the appropriate carbohydrate. The application of glycosylated ND allows versatile and facile detection of bacteria and their efficient removal by using an environmentally and biomedically benign material.  相似文献   

14.
The present study attempted to apply the capillary electrophoresis technique for the fractionation and separation of S. Staphylococcus hominis and Escherichia coli bacteria isolated from urine samples and the detection of migrated fraction with spectrometric method. This involved the selection of suitable conditions for separation as well as the identification of pathogens. The result of the research was the separation of Gram-negative and Gram-positive bacteria, as well as their subsequent identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using two different approaches (culture of fractions on an agar plate and direct analysis of the collected fractions). The preliminary results provide a solid basis for further research on the use of electromigration techniques with LDI detection to identify pathogens such as bacteria and viruses in biological samples.  相似文献   

15.
Rapid on-site detection of pathogenic bacteria with high sensitivity and specificity is becoming an urgent need in public health assurance, medical diagnostics, environmental monitoring, and food safety fields. Despite being reliable and widely used, the existing methods of bacteria detection are cumbersome and time-consuming, which is not conducive to field detection. Microfluidic lab-on-a-chip technology has provided a detective tool for various analytes, due to its miniaturization, portabilit...  相似文献   

16.
Suresh KK  Lee MJ  Park J  Kang SH 《Talanta》2008,75(1):49-55
This paper describes the applicability of microchip gel electrophoresis using a programmed field strength gradients (MGE-PFSG) method coupled with a polymerase chain reaction (PCR) for the ultra-fast diagnosis of canine T-cell lymphoma. The variable region in the T-cell receptor gamma (TCRgamma) gene from a T-cell lymphoma was used in PCR amplification. The contributions of the various parameters, including the effects of the molecular weight, concentration of the sieving matrix and field strength in MGE, were examined. 0.5% poly (ethyleneoxide) (PEO, M(r) 8000000) was used as the sieving matrix for the ultra-rapid separation of the amplified-PCR products (90 and 130-bp DNA fragments) from the PFSG at an effective length of 20mm in a glass microchip. The PCR products (90 and 130-bp DNA) of the T-cell lymphoma were analyzed within 41.7+/-0.1s, 15.5+/-0.2s and only 7.0+/-0.1s using a low-constant field strength, high-constant field strength and the PFSG, respectively. When 11 clinical samples were analyzed using the MGE-PFSG method, there was a 100% correlation with those obtained using conventional slab gel electrophoresis. The ultra-fast detection and rapid separation capabilities of MGE-PFSG make it an efficient tool for diagnosing T-cell lymphoma in clinical samples with high sensitivity.  相似文献   

17.
The cloning in E. coli of a cholerae toxin gene that is A-B+ has been successfully constructed by using DNA recombinant techniques. E. coli cells carrying the recombinant plasmid pMM-CTB have been shown to produce a large amount of CTB subunits which are secreted as extracellular proteins.  相似文献   

18.
A novel and facile approach of pathogenic bacteria detection, which utilizes fluorescent sensing and bacteria capture with Magnetic carbon dots (Mag-CDs), was proposed in this work. Magnetic nanoparticles were synthesized and then decorated with C-dots, and further functionalized with amine groups (chitosan). In this way, bacteria were strongly anchored on the hybrid material Mag-CDs for highly sensitive fluorescent detection. The Mag-CDs were characterized by UV–vis, FT-IR spectra, TEM images, XRD, and EDX. The characterizations validate the fabrication of amine-Mag-CDs and the promising applications of this material. Fluorescence spectroscope and MALDI-MS were used for the detection and identification of bacterial strains, respectively. The limit of detection for Staphylococcus aureus and Escherichia coli was found to be 3 × 102 and 3.5 × 102 cfu mL−1, respectively. With these encouraging results, it is expected that it would open revenues for promising applications of Mag-CDs nanomaterial.  相似文献   

19.
Pumera M  Merkoçi A  Alegret S 《Electrophoresis》2006,27(24):5068-5072
This report studies the electrochemical response of wall-jet detector for microchip electrophoresis (microCE). It shows that in wall-jet configuration, the electrochemical detector operates in coulometric mode and that there is an influence of detection potential upon peak width and therefore upon the resolution of solutes. Upon raising the detection potential from +0.3 to +0.9 V, the resolution between model analytes, dopamine and catechol, increases from 0.63 to 2.90. The reasons for this behavior originate in wall-jet detector design and in its typically significant higher detector volume than the volume of injected sample. The conversion efficiency of the wall-jet electrochemical detection cell was found to be 97.4% for dopamine and 98.0% for catechol. The paper brings deeper understanding of operations of wall-jet electrochemical detectors for microchip devices, and it explains previously reported significantly sharper peaks when electrocatalytic electrodes (i.e., palladium and carbon nanotube) were used in microCE-electrochemistry wall-jet detector.  相似文献   

20.
Microorganisms like bacteria, viruses, fungi, etc. have a major impact on human, animal, and plant life. Several decades ago it was observed that intact cells suspended in an isotonic salt solution moved toward the anode and the mobility was proportional to the density of the charge located on the cell surfaces. Since then, efforts have been made to make electrophoresis a useful tool in cell studies. Microorganisms are no exception. In the present work we applied the capillary zone electrophoresis (CZE) with dynamical modification of the capillary surface for separation of E. coli and P. vulgaris. The same method was used for identification of E. coli in infected urine (direct injection - UTIs) and also for identification of Helicobacter pylori which is a gram-negative bacillus responsible for one of the most common infections found in humans worldwide. Using spectrophotometric measurements at λ = 214 nm we proved that it is possible to measure the concentration of bacterial cells up to 5 × 108 cells/mL. Recent studies have demonstrated very practical uses for electrophoretic techniques, especially in the field of medical diagnosis. Figure The developed CZE method allows the rapid analysis and identification of pathogenic bacteria: example shown illustrates the identifcation of E. coli in a urine sample determined much more rapidly than with conventional culturing on Petri dishes Presented at the 11th International Conference on Chemistry and the Environment, 9–12 September 2007, Torun, Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号