首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

2.
《Physics letters. A》2020,384(18):126387
Quantum process tomography (QPT) of each directly implementable quantum gate used in the IBM quantum processors is performed to compute gate error in order to check viability of complex quantum operations in the superconductivity-based quantum computers introduced by IBM. QPT of C-NOT gates is performed for three configurations available in IBM QX4. For the other allowed gates QPT have been performed for every allowed position (i.e., by placing the gates in different qubit lines) for IBM QX4 architecture, and thus, gate fidelities are obtained. Gate fidelities are observed to be lower than the corresponding values obtained in the other technologies, like NMR. Further, gate fidelities for all the single-qubit gates are obtained for IBM QX2 architecture by placing the gates in the third qubit line (q[2]). It's observed that the IBM QX4 architecture yields better gate fidelity compared to IBM QX2 in all cases except Y gate.  相似文献   

3.
Any unitary operation in quantum information processing can be implemented via a sequence of simpler steps — quantum gates. However, actual implementation of a quantum gate is always imperfect and takes a finite time. Therefore, searching for a short sequence of gates — efficient quantum circuit for a given operation, is an important task. We contribute to this issue by proposing optimization of the well-known universal procedure proposed by Barenco et al. [Phys. Rev. A 52, 3457 (1995)]. We also created a computer program which realizes both Barenco’s decomposition and the proposed optimization. Furthermore, our optimization can be applied to any quantum circuit containing generalized Toffoli gates, including basic quantum gate circuits.   相似文献   

4.
We describe a quantum repeater protocol for long-distance quantum communication. In this scheme, entanglement is created between qubits at intermediate stations of the channel by using a weak dispersive light-matter interaction and distributing the outgoing bright coherent-light pulses among the stations. Noisy entangled pairs of electronic spin are then prepared with high success probability via homodyne detection and postselection. The local gates for entanglement purification and swapping are deterministic and measurement-free, based upon the same coherent-light resources and weak interactions as for the initial entanglement distribution. Finally, the entanglement is stored in a nuclear-spin-based quantum memory. With our system, qubit-communication rates approaching 100 Hz over 1280 km with fidelities near 99% are possible for reasonable local gate errors.  相似文献   

5.
Efficient local implementation of a nonlocal multi-party quantum Toffoli gate is considered. We present and demonstrate a scheme that can improve significantly the implementation of this nonlocal (N + 1)-party gate by harnessing N entangled pairs of qubits as quantum channels and a (N+1)-dimensional qudit as a catalyser. The quantum circuit that does the proposed implementation is built entirely of local single-body and two-body gates, and has only (2N + 1) two-body gates. The method that we describe is independent of the particular physical system used to encode quantum information and the way in which the elemental gates are realized.  相似文献   

6.
We demonstrate new experimental procedures for measuring small errors in a superconducting quantum bit (qubit). By carefully separating out gate and measurement errors, we construct a complete error budget and demonstrate single qubit gate fidelities of 0.98, limited by energy relaxation. We also introduce a new metrology tool-- Ramsey interference error filter-that can measure the occupation probability of the state |2> which is outside the computational basis, down to 10{-4}, thereby confirming that our quantum system stays within the qubit manifold during single qubit logic operations.  相似文献   

7.
We analyze the achievable precision for single-qubit gates that are based on off-resonant Raman transitions between two near-degenerate ground states via a virtually excited state. In particular, we study the errors due to non-perfect adiabaticity and due to spontaneous emission from the excited state. For the case of non-adiabaticity, we calculate the error as a function of the dimensionless parameter χ=Δτ, where Δ is the detuning of the Raman beams and τ is the gate time. For the case of spontaneous emission, we give an analytical argument that the gate errors are approximately equal to Λ γ/Δ, where Λ is the rotation angle of the one-qubit gate and γ is the spontaneous decay rate, and we show numerically that this estimate holds to good approximation.  相似文献   

8.
A protocol is proposed to realize one‐step implementation of the N‐qubit nonadiabatic holonomic quantum gates with superconducting qubits. The inverse Hamiltonian engineering is applied in designing microwave pulses to drive superconducting qubits. By combining curve fitting, the wave shapes of the designed pulses can be described by simple functions, which are not hard to realize in experiments. To demonstrate the effectiveness of the protocol, a three‐qubit holonomic controlled π‐phase gate is taken as an example in numerical simulations. The results show that the protocol holds robustness against noise and decoherence. Therefore, the protocol may provide an alternative approach for implementing N‐qubit nonadiabatic holonomic quantum gates.  相似文献   

9.
Wilson chains, based on a logarithmic discretization of a continuous spectrum, are widely used to model an electronic (or bosonic) bath for Kondo spins and other quantum impurities within the numerical renormalization group method and other numerical approaches. In this short note we point out that Wilson chains can not serve as thermal reservoirs as their temperature changes by a number of order ΔE when a finite amount of energy ΔE is added. This proves that for a large class of non-equilibrium problems they cannot be used to predict the long-time behavior.  相似文献   

10.
Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors.However,all the previous schemes have to use at least two sequentially implemented gates to realize a general one-qubit gate.Based on two recent reports,we construct two Hamiltonians and experimentally realized nonadiabatic holonomic gates by a single-shot implementation in a two-qubit nuclear magnetic resonance(NMR)system.Two noncommuting one-qubit holonomic gates,rotating along x?and z?axes respectively,are implemented by evolving a work qubit and an ancillary qubit nonadiabatically following a quantum circuit designed.Using a sequence compiler developed for NMR quantum information processor,we optimize the whole pulse sequence,minimizing the total error of the implementation.Finally,all the nonadiabatic holonomic gates reach high unattenuated experimental fidelities over 98%.  相似文献   

11.
吴超  方卯发  肖兴  李艳玲  曹帅 《中国物理 B》2011,20(2):20305-020305
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance,are used for implementing quantum gates.By using dressed states,quantum state transfer and quantum entangling gate can be implemented.With the help of the time-dependent electromagnetic field,any two dressed qubits can be selectively coupled to the data bus (the last LC circuit),then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed.As a result,the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.  相似文献   

12.
Single rare-earth ions doped in solids are one kind of the promising candidates for quantum nodes towards a scalable quantum network.Realizing a universal set of high-fidelity gate operations is a central requirement for functional quantum nodes.Here we propose geometric gate operations using the hybridized states of electron spin and nuclear spin of an ion embedded in a crystal.The fidelities of these geometric gates achieve 0.98 in the realistic experimental situations.We also show the robustness of geometric gates to pulse fluctuations and to environment decoherence.These results provide insights for geometric phases in dissipative systems and show a potential application of high fidelity manipulations for future quantum internet nodes.  相似文献   

13.
We propose a scheme to implement a two-bit conditional quantum phase gate and generate a multi-atom cluster state and a two-atom three-dimensional entangled state based on photon emission and absorption processes. In the scheme, a Λ-type atom and a V-type atom are individually trapped in two spatially separated cavities connected by an optical fiber. By choosing the interaction time and the ratio of coupling parameters appropriately, the gate operation and entanglement generation can be determinately achieved. We also discuss the influence of photon Leakage on the fidelities of the gate and entanglement and show that the scheme is scalable and feasible in the experimental realization and further utilization.  相似文献   

14.
《中国物理 B》2021,30(7):78403-078403
A semi-infinite waveguide acts as a mirror and helps protect the qubit in front of it from decoherence. Here, we investigate the interference effect in an open waveguide consisting of resonators with different decay rates. We find that a lossy resonator works as a mirror and changes the effective decay rate of the other. The spontaneous radiation of qubit is related to its environment, and we can control it by arranging the lossy resonator's position or frequency. Our approach helps improving the qubit performance, as well as the quantum gate fidelities.  相似文献   

15.
We study quantum coherence in a semiconductor charge qubit formed from a GaAs double quantum dot containing a single electron. Voltage pulses are applied to depletion gates to drive qubit rotations and noninvasive state readout is achieved using a quantum point contact charge detector. We measure a maximum coherence time of ~7 ns at the charge degeneracy point, where the qubit level splitting is first-order insensitive to gate voltage fluctuations. We compare measurements of the coherence time as a function of detuning with numerical simulations and predictions from a 1/f noise model.  相似文献   

16.
A 1→2 telecloning solution for an arbitrary three-particle entangled W state is proposed in which two four-particle entangled states are used as quantum channels. It is proposed that the three-particle W state can be telecloned based on the quantum teleportation and the local copying of entanglement, and the fidelity of each clone depends on the input state. This scheme can be generalized into the case of 1→N (N>2) telecloning of an arbitrary three-particle W state. Furthermore, another scheme for 1→N (N≥2) telecloning of an arbitrary n-particle (n≥4) W state is proposed, the multi-bit controlled-NOT (CNOT) gates and additional particles are needed in this case. Project 10574060 supported by the National Natural Science Foundation of China.  相似文献   

17.
We have examined a technique of complex shaping of mid-infrared femtosecond laser pulses towards accurate and precise control of rovibrational wave packets of molecules in the ground electronic state. A Germanium acousto-optics modulator was used as a device for the pulse shaping. In order to characterize the shaped pulses precisely, sum-frequency cross-correlation frequency-resolved optical gating was introduced for the analysis of both amplitude and phase of the electric fields. The mid-infrared pulses were shaped and characterized with a frequency resolution better than 4.5 cm−1. Such a resolution is supposed to be sufficient for the realization of quantum gate operations with high fidelity, which is one of the most challenging applications of rovibrational wave packet manipulation of molecules. In order to demonstrate the precision of our method of shaping and its characterization, we have generated shaped pulses that will realize Hadamard and NOT quantum gates with rovibrational states of a CO molecule.  相似文献   

18.
A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this Letter, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single-gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude-shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates.  相似文献   

19.
The quantum correlation between a pair of photons, emitted by a Δ- type atom, is calculated. The correlation show anti-bunching property, and the second correlation function is dependent on classical field Ω. So we can control the magnitude of the joint detection probability by adjusting the driving field. In addition, Δ-type atom can also work as storage and retrieving apparatus.  相似文献   

20.
We discuss a possible experimental realization of fast quantum gates with high fidelity with ions confined in microscopic traps. The original proposal of this physical system for quantum computation comes from Cirac and Zoller (Nature 404, 579 (2000)). In this paper we analyse a sensitivity of the ion-trap quantum gate on various experimental parameters which was omitted in the original proposal. We address imprecision of laser pulses, impact of photon scattering, nonzero temperature effects and influence of laser intensity fluctuations on the total fidelity of the two-qubit phase gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号