首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mer-[Ru(pic)3] isomer, where pic is 2-pyridinecarboxylic acid, undergoes base hydrolysis at pH > 12. The reaction was monitored spectrophotometrically within the UV–Vis spectral range. The product of the reaction, the [Ru(pic)2(OH)2] ion, is formed via a consecutive two-stage process. The chelate ring opening is proceeded by the nucleophilic attack of OH ion at the carbon atom of the carboxylic group and the deprotonation of the attached hydroxo group. In the second stage, the fast deprotonation of the coordinated OH ligand leads to liberation of the monodentato bonded picolinate. The dependence of the observed pseudo-first-order rate constant on [OH] is given by k\textobs1 = \frack + k1 [\textOH - ] + k + k2 K1 [\textOH - ]2 k - + k1 + ( k + + k2 K1 )[\textOH - ] + k + K1 [\textOH - ]2 k_{{{\text{obs}}1}} = \frac{{k_{ + } k_{1} [{\text{OH}}^{ - } ] + k_{ + } k_{2} K_{1} [{\text{OH}}^{ - } ]^{2} }}{{k_{ - } + k_{1} + \left( {k_{ + } + k_{2} K_{1} } \right)[{\text{OH}}^{ - } ] + k{}_{ + }K_{1} [{\text{OH}}^{ - } ]^{2} }} and ( k\textobs2 = \frackca + kcb K2 [\textOH - ]1 + K2 [\textOH - ] ) \left( {k_{{{\text{obs}}2}} = \frac{{k_{ca} + k_{cb} K_{2} [{\text{OH}}^{ - } ]}}{{1 + K_{2} [{\text{OH}}^{ - } ]}}} \right) for the first and the second stage, respectively, where k 1, k 2, k -, k ca , k cb are the first-order rate constants and k + is the second-order one, K 1 and K 2 are the protolytic equilibria constants.  相似文献   

2.
The enthalpies of dissolution of 1,2,3-triazole nitrate in water were measured using a RD496-2000 Calvet microcalorimeter at four different temperatures under atmospheric pressure. Differential enthalpies (Δdif H) and molar enthalpies (Δdiss H) of dissolution were determined. The corresponding kinetic equations that describe the dissolution rate at the four experimental temperatures are \fracdadt / s - 1 = 10 - 3.75( 1 - a)0.96\frac{d\alpha}{dt} / \mathrm{s}^{ - 1} =10^{ - 3.75}( 1 - \alpha)^{0.96} (T=298.15 K), \fracdadt /s - 1 = 10 - 3.73( 1 - a)1.00\frac{d\alpha}{dt} /\mathrm{s}^{ - 1} = 10^{ - 3.73}( 1 - \alpha)^{1.00} (T=303.15 K), \fracdadt / s - 1 = 10 - 3.72( 1 - a)0.98\frac{d\alpha}{dt} / \mathrm{s}^{ - 1} = 10^{ - 3.72}( 1 - \alpha)^{0.98} (T=308.15 K) and \fracdadt / s - 1 = 10 - 3.71( 1 -a)0.97\frac{d\alpha}{dt} / \mathrm{s}^{ - 1} = 10^{ - 3.71}( 1 -\alpha)^{0.97} (T=313.15 K). The determined values of the activation energy E and pre-exponential factor A for the dissolution process are 5.01 kJ⋅mol−1 and 10−2.87 s−1, respectively.  相似文献   

3.
The solution of the exponential integral at linear heating for the general case that the activation energy linearly depends on temperature according toE(T)=E 0+RBT is
\fracAqò0T TB exp( - \fracE0 RT ) dT = \fracAq( \fracRTB + 2 E0 + (B + 2)RT ) exp( - \fracE0 RT ).\frac{A}{q}\int\limits_0^T {T^B \exp \left( { - \frac{{E_0 }}{{RT}}} \right) dT = \frac{A}{q}\left( {\frac{{RT^{B + 2} }}{{E_0 + (B + 2)RT}}} \right)} \exp \left( { - \frac{{E_0 }}{{RT}}} \right).  相似文献   

4.
Using three accurate potential energy surfaces of the 3A″, 3A′, and 1A′ states constructed recently, we present a quasi-classical trajectory (QCT) calculation for O + HCl (v = 0, j = 0)  OH + Cl reaction at the collision energies (E col) of 14.0–20.0 kcal/mol. The three angular distribution functions—P(qr ) P(\theta_{r} ) , P(jr ) P(\varphi_{r} ) , and P(qr ,jr ) P(\theta_{r} ,\varphi_{r} ) , together with the four commonly used polarization-dependent differential cross-sections, \frac2ps \fracds00 dwt , \frac2ps \fracds20 dwt , \frac2ps \fracds22 + dwt , \textand \frac2ps \fracds21 - dwt {\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{00} }}{{d\omega_{t} }}},\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{20} }}{{d\omega_{t} }}},\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{22 + } }}{{d\omega_{t} }}},\,{\text{and}}\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{21 - } }}{{d\omega_{t} }}} are exhibited to get an insight into the alignment and the orientation of the product OH radical. There is a similar behavior of the tendency scattering direction for the two triplet electronic states (3A″ and 3A′)—backward scattering dominates, however, forward scattering prevails for the case of 1A′ state. Also, obvious differences have been found in the stereo-dynamical information, which reveals the influences of the potential energy surface and the collision energy. The degrees of polarization and the influence of the collision energy on the stereo-dynamics characters of the title reaction are both demonstrated in the order of 3A′ > 3A″ > 1A′.  相似文献   

5.
The kinetics of oxidation of L-valine by a copper(III) periodate complex was studied spectrophotometrically. The inverse second-order dependency on [OH] was due to the formation of the protonated diperiodatocuprate(III) complex ([Cu(H3IO6)2]) from [Cu(H2IO6)2]3−. The retarding effect of initially added periodate suggests that the dissociation of copper(III) periodate complex occurs in a pre-equilibrium step in which it loses one periodate ligand. Among the various forms of copper(III) periodate complex occurring in alkaline solutions, the monoperiodatocuprate(III) appears to be the active form of copper(III) periodate complex. The observed second-order dependency of [L-valine] on the rate of reaction appears to result from formation of a complex with monoperiodatocuprate(III) followed by oxidation in a slow step. A suitable mechanism consistent with experimental results was proposed. The rate law was derived as:
- \fracd[DPC]dt = \frackK1K2K3[Cu(H2IO6)2]f3- [L -Val]f2[H3IO62 -]f[OH - ]f2.- \frac{\mathrm{d}[\mathrm{DPC}]}{\mathrm{d}t} =\frac{kK_{1}K_{2}K_{3}[\mathrm{Cu}(\mathrm{H}_{2}\mathrm{IO}_{6})_{2}]_{\mathrm{f}}^{3-} [\mathrm{L} -\mathrm{Val}]_{\mathrm{f}}^{2}}{[\mathrm{H}_{3}\mathrm{IO}_{6}^{2 -}]_{\mathrm{f}}[\mathrm{OH}^{ -} ]_{\mathrm{f}}^{2}}.  相似文献   

6.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

7.
Polypyrrole polymer films doped with the large, immobile dodecylbenzene sulfonate anions operating in alkali halide aqueous electrolytes has been used as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance technique was used to determine the amount of charge inserted and the total mass change during the reduction process in a polypyrrole film. From these values, the number of water molecules accompanying each cation was evaluated. The number of water molecules entering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primary membrane hydration number of the cation involved in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are:
\textL\texti + : 5.5 - 5.3;\text N\texta + : 4.5 - 4.3; \textK + : 2.3 - 2.5;\text R\textb + : 0.9 - 0.8 ;\text C\texts + : ~ 0;\text M\textg2 + :10.4 - 10.6;\textC\texta2 + :7.9 - 8.1;\textS\textr2 + :5.7 - 6.1;\textB\texta2 + :3.0 - 3.1;\textY3 + :13.6 - 13.8 ;\textL\texta3 + :9.0 - 9.1. {\text{L}}{{\text{i}}^{ + }}:{ 5}.{5} - {5}.{3};{\text{ N}}{{\text{a}}^{ + }}:{ 4}.{5} - {4}.{3};{ }{{\text{K}}^{ + }}:{ 2}.{3} - {2}.{5};{\text{ R}}{{\text{b}}^{ + }}:{ }0.{9} - 0.{8 };{\text{ C}}{{\text{s}}^{ + }}:{ }\sim 0;{\text{ M}}{{\text{g}}^{{{2} + }}}:{1}0.{4} - {1}0.{6};{\text{C}}{{\text{a}}^{{{2} + }}}:{7}.{9} - {8}.{1};{\text{S}}{{\text{r}}^{{{2} + }}}:{5}.{7} - {6}.{1};{\text{B}}{{\text{a}}^{{{2} + }}}:{3}.0 - {3}.{1};{{\text{Y}}^{{{3} + }}}:{13}.{6 } - { 13}.{8 };{\text{L}}{{\text{a}}^{{{3} + }}}:{9}.0 - {9}.{1}.  相似文献   

8.
The oxidation of aquaethylenediaminetetraacetatocobaltate(II) [Co(EDTA)(H2O)]−2 by N-bromosuccinimide (NBS) in aqueous solution has been studied spectrophotometrically over the pH 6.10–7.02 range at 25 °C. The reaction is first-order with respect to complex and the oxidant, and it obeys the following rate law:
\textRate = k\textet K 2 K 3 [ \textCo\textII ( \textEDTA )( \textH 2 \textO ) - 2 ]\textT [\textNBS] \mathord/ \vphantom [\textNBS] ( [ \textH + ] + K 2 ) ( [ \textH + ] + K 2 ) {\text{Rate}} = k^{\text{et} } K_{ 2} K_{ 3} \left[ {{\text{Co}}^{\text{II}} \left( {\text{EDTA}} \right)\left( {{\text{H}}_{ 2} {\text{O}}} \right)^{ - 2} } \right]_{\text{T}} {{[{\text{NBS}}]} \mathord{\left/ {\vphantom {{[{\text{NBS}}]} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}  相似文献   

9.
The oxidation of l-valine (l-val) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 3.0 × 10−3 mol dm−3 was studied spectrophotometrically at 298 K and follows the rate law;
where K 4, K 5 and K 6 are the equilibrium constants for the different steps involved in the mechanism, k is the rate constant for the slow step of the reaction. The appearance of [l-val] term in both numerator and denominator explains the observed less than unit order in [l-val]. Similarly the appearances of [H3IO6 2−] and [OH] in the denominator obey the experimental negative less than unit order in [H3IO6 2−] and [OH], respectively. The oxidation reaction in alkaline medium proceeds via a DPC-l-valine complex, which decomposes slowly in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectroscopic studies.  相似文献   

10.
In order to evaluate the effectiveness of aldehyde dehydrogenase (ALDH) from Saccharomyces cerevisiae as a catalyst for the conversion of acetaldehyde into its physiologically and biologically less toxic acetate, the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Even with literature accounts of the binding complexations, the yeast ALDH currently lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters under higher acetaldehyde concentrations. Both substrate acetaldehyde and product NADH were observed as individual sources of inhibition with the combined effect of a ternary complex of acetaldehyde and the coenzyme leading to experimental rates as little as an eighth of the expected activity. Furthermore, the onset and strength of inhibition from each component were directly affected by the concentration of the co-substrate NAD. While acetaldehyde inhibition of ALDH is initiated below concentrations of 0.05?mM in the presence of 0.5?mM NAD or less, the acetaldehyde inhibition onset shifts to 0.2?mM with as much as 1.6?mM NAD. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression: $$ v = \frac{{Vmax\left( {{\text A}{\text B}} \right)}}{{KiaKb + KbA + KaB + AB + \frac{{{B^2}}}{{KI-Ald}} + \frac{{{B^2}Q}}{{KI-Ald-NADH}} + \frac{{BQ}}{{KI-NADH}}}} $$ where the last three terms represent the inhibition complex terms for acetaldehyde, acetaldehyde?CNADH, and NADH, respectively. The corresponding values of K I?CAld, K I?CAld?CNADH, and K I?CNADH for yeast ALDH are 2.55, 0.0269, and 0.162?mM at 22?°C and pH?7.8.  相似文献   

11.
Results of solubility experiments involving crystalline nickel oxide (bunsenite) in aqueous solutions are reported as functions of temperature (0 to 350 °C) and pH at pressures slightly exceeding (with one exception) saturation vapor pressure. These experiments were carried out in either flow-through reactors or a hydrogen-electrode concentration cell for mildly acidic to near neutral pH solutions. The results were treated successfully with a thermodynamic model incorporating only the unhydrolyzed aqueous nickel species (viz., Ni2+) and the neutrally charged hydrolyzed species (viz., Ni(OH)20)\mathrm{Ni(OH)}_{2}^{0}). The thermodynamic quantities obtained at 25 °C and infinite dilution are, with 2σ uncertainties: log10Ks0o = (12.40 ±0.29),\varDeltarGmo = -(70. 8 ±1.7)\log_{10}K_{\mathrm{s0}}^{\mathrm{o}} = (12.40 \pm 0.29),\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = -(70. 8 \pm 1.7) kJ⋅mol−1; \varDeltarHmo = -(105.6 ±1.3)\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = -(105.6 \pm 1.3) kJ⋅mol−1; \varDeltarSmo = -(116.6 ±3.2)\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} =-(116.6 \pm 3.2) J⋅K−1⋅mol−1; \varDeltarCp,mo = (0 ±13)\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = (0 \pm 13) J⋅K−1⋅mol−1; and log10Ks2o = -(8.76 ±0.15)\log_{10}K_{\mathrm{s2}}^{\mathrm{o}} = -(8.76 \pm 0.15); \varDeltarGmo = (50.0 ±1.7)\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = (50.0 \pm 1.7) kJ⋅mol−1; \varDeltarHmo = (17.7 ±1.7)\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = (17.7 \pm 1.7) kJ⋅mol−1; \varDeltarSmo = -(108±7)\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} = -(108\pm 7) J⋅K−1⋅mol−1; \varDeltarCp,mo = -(108 ±3)\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = -(108 \pm 3) J⋅K−1⋅mol−1. These results are internally consistent, but the latter set differs from those gleaned from previous studies recorded in the literature. The corresponding thermodynamic quantities for the formation of Ni2+ and Ni(OH)20\mathrm{Ni(OH)}_{2}^{0} are also estimated. Moreover, the Ni(OH)3 -\mathrm{Ni(OH)}_{3}^{ -} anion was never observed, even in relatively strong basic solutions (mOH - = 0.1m_{\mathrm{OH}^{ -}} = 0.1 mol⋅kg−1), contrary to the conclusions drawn from all but one previous study.  相似文献   

12.
The enthalpies of dissolution in ethyl acetate and acetone of hexanitrohexaazaisowurtzitane (CL-20) were measured by means of a RD496-2000 Calvet microcalorimeter at 298.15 K, respectively. Empirical formulae for the calculation of the enthalpy of dissolution (Δdiss H), relative partial molar enthalpy (Δdiss H partial), relative apparent molar enthalpy (Δdiss H apparent), and the enthalpy of dilution (Δdil H 1,2) of each process were obtained from the experimental data of the enthalpy of dissolution of CL-20. The corresponding kinetic equations describing the two dissolution processes were \frac\textda\textdt = 1.60 ×10 - 2 (1 - a)0.84 {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = 1.60 \times 10^{ - 2} (1 - \alpha )^{0.84} for dissolution process of CL-20 in ethyl acetate, and \frac\textda\textdt = 2.15 ×10 - 2 (1 - a)0.89 {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = 2.15 \times 10^{ - 2} (1 - \alpha )^{0.89} for dissolution process of CL-20 in acetone.  相似文献   

13.
The curing kinetics of a bi-component system about o-cresol-formaldehyde epoxy resin (o-CFER) modified by liquid crystalline p-phenylene di[4-(2,3-epoxypropyl) benzoate] (p-PEPB), with 3-methyl-tetrahydrophthalic anhydride (MeTHPA) as a curing agent, were studied by non-isothermal differential scanning calorimetry (DSC) method. The relationship between apparent activation energy E a and the conversion α was obtained by the isoconversional method of Ozawa. The reaction molecular mechanism was proposed. The results show that the values of E a in the initial stage are higher than other time, and E a tend to decrease slightly with the reaction processing. There is a phase separation in the cure process with LC phase formation. These curing reactions can be described by the Šesták–Berggren (S–B) equation, the kinetic equation of cure reaction as follows: \frac\textda\textdt = Aexp( - \fracE\texta RT )am ( 1 - a )n {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = A\exp \left( { - {\frac{{E_{\text{a}} }}{RT}}} \right)\alpha^{m} \left( {1 - a} \right)^{n} .  相似文献   

14.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

15.
Thermal decomposition kinetics of magnesite were investigated using non-isothermal TG-DSC technique at heating rate (β) of 15, 20, 25, 35, and 40 K min−1. The method combined Friedman equation and Kissinger equation was applied to calculate the E and lgA values. A new multiple rate iso-temperature method was used to determine the magnesite thermal decomposition mechanism function, based on the assumption of a series of mechanism functions. The mechanism corresponding to this value of F(a), which with high correlation coefficient (r-squared value) of linear regression analysis and the slope was equal to −1.000, was selected. And the Malek method was also used to further study the magnesite decomposition kinetics. The research results showed that the decomposition of magnesite was controlled by three-dimension diffusion; mechanism function was the anti-Jander equation, the apparent activation energy (E), and the pre-exponential term (A) were 156.12 kJ mol−1 and 105.61 s−1, respectively. The kinetic equation was
\frac\textda\textdT = \frac105. 6 1 bexp( - \frac18777.9T ){ \frac32(1 + a)2/3 [(1 + a)1/3 - 1] - 1 }, \frac{{{\text{d}}\alpha }}{{{\text{d}}T}} = \frac{{10^{5. 6 1} }}{\beta }\exp \left( { - \frac{18777.9}{T}} \right)\left\{ {\frac{3}{2}(1 + \alpha )^{2/3} [(1 + \alpha )^{1/3} - 1]^{ - 1} } \right\},  相似文献   

16.
l-cysteine undergoes facile electron transfer with heteropoly 10-tungstodivanadophosphate, [ \textPV\textV \textV\textV \textW 1 0 \textO 4 0 ]5 - , \left[ {{\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} } \right]^{5 - } , at ambient temperature in aqueous acid medium. The stoichiometric ratio of [cysteine]/[oxidant] is 2.0. The products of the reaction are cystine and two electron-reduced heteropoly blue, [PVIVVIVW10O40]7−. The rates of the electron transfer reaction were measured spectrophotometrically in acetate–acetic acid buffers at 25 °C. The orders of the reaction with respect to both [cysteine] and [oxidant] are unity, and the reaction exhibits simple second-order kinetics at constant pH. The pH-rate profile indicates the participation of deprotonated cysteine in the reaction. The reaction proceeds through an outer-sphere mechanism. For the dianion SCH2CH(NH3 +)COO, the rate constant for the cross electron transfer reaction is 96 M−1s−1 at 25 °C. The self-exchange rate constant for the - \textSCH2 \textCH( \textNH3 + )\textCOO - \mathord
/ \vphantom - \textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } \mathord{\left/ {\vphantom {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }}} \right. \kern-\nulldelimiterspace} {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }} couple was evaluated using the Rehm–Weller relationship.  相似文献   

17.
The oxidation of N,N-dimethylethanolamine (DMEA) by bis(hydrogenperiodato) argentate(III) ([Ag(HIO6)2]5−) was studied in aqueous alkaline medium. Formaldehyde and dimethylamine were identified as the major oxidation products after the oxidation of DMEA. The oxidation kinetics was followed spectrophotometrically in the temperature range of 25.0 °C–40.0 °C. It was found that the reaction was first order in [Ag(III)]; the oberved first-order rate constants k obsd as functions of [DMEA], [OH] and total concentration of periodate ([IO4-]tot[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}) were analyzed and were revealed to follow a rate expression: kobsd = (k1 +k2[OH-])K1K2[DMEA]/{f([OH-])[IO4-]tot+ K1 + K1K2[DMEA]}k_{\mathrm{obsd}} = (k_{1} +k_{2}[\mathrm{OH}^{-}])K_{1}K_{2}[\mathrm{DMEA}]/\{f([\mathrm{OH}^{-}])[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}+ K_{1} + K_{1}K_{2}[\mathrm{DMEA}]\}. Rate constants k 1 and k 2 and equilibrium constant K 2 were derived; activation parameters corresponding to k 1 and k 2 were computed. In the proposed reaction mechanism, a peridato-Ag(III)-DMEA ternary complex is formed indirectly through a reactive intermediate species [Ag(HIO6)(OH)(H2O)]2−. In subsequent rate-determining steps as described by k 1 and k 2, the ternary complex decays to Ag(I) through two reaction pathways: one of which is spontaneous and the other is prompted by an OH.  相似文献   

18.
The electrical conductances of pyridinium dichromate have been measured in N,N-dimethyl formamide–water mixtures of different compositions in the temperature range 283–313 K. The limiting molar conductance, Λ0, association constant of the ion pair, K A, and dissociation constant K C have been calculated using the Shedlovsky and Kraus–Bray equations. The effective ionic radii (r i ) of C5H5NH+ and Cr2O7 -\mathrm{Cr}_{2}\mathrm{O}_{7}^{ -} have been determined from the Li0\Lambda_{i}^{0} values using Gill’s modification of Stokes’ law. The influence of the mixed solvent composition on the solvation of ions is discussed with the help of the ‘R’-factor ( R = \frachL ±0(solvent)hL ±0(water)R = \frac{\eta \Lambda_{ \pm}^{0}(\mathrm{solvent})}{\eta\Lambda_{ \pm}^{0}(\mathrm{water})}). Thermodynamic parameters are evaluated and reported. The results of this study are interpreted in terms of ion–solvent interactions and solvent properties.  相似文献   

19.
Hybrid multilayer films composed of poly(ethylenimine) and the Keggin-type polyoxometalates [ SiW11O39 ]8 - ( SiW11 ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{{\hbox{O}}_{{39}}}} \right]^{{8} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}} \right) and [ SiW11CoII( H2O )O39 ]6 - ( SiW11Co ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{C}}{{\hbox{o}}^{\rm{II}}}\left( {{{\hbox{H}}_2}{\hbox{O}}} \right){{\hbox{O}}_{{39}}}} \right]^{{6} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{Co}}} \right) were prepared on glassy carbon electrodes by layer-by-layer self-assembly, and were characterized by cyclic voltammetry and scanning electron microscopy. UV-vis absorption spectroscopy of films deposited on quartz slides was used to monitor film growth, showing that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of bilayers. Cyclic voltammetry indicates that the electrochemical properties of the polyoxometalates are maintained in the multilayer films, and that the first tungsten reduction process for immobilized SiW11 and SiW11Co is a surface-confined process. Electron transfer to [ Fe( CN )6 ]3 - /4 - {\left[ {{\hbox{Fe}}{{\left( {\hbox{CN}} \right)}_6}} \right]^{{3} - /{4} - }} and [ Ru( NH3 )6 ]3 + /2 + {\left[ {{\hbox{Ru}}{{\left( {{\hbox{N}}{{\hbox{H}}_3}} \right)}_6}} \right]^{{3} + /{2} + }} as electrochemical probes was also investigated by cyclic voltammetry. The (PEI/SiW11Co)n multilayer films showed excellent electrocatalytic reduction properties towards nitrite, bromate and iodate.  相似文献   

20.
Ground state non-covalent interactions between a newly designed macrocyclic 1,3,5-trihomo calix[6]arene receptor, designated as 1, and the C60 and C70 fullerenes have been studied in toluene solutions. It was observed that the absorbances of both C60 and C70 solutions increased upon the addition of increasing concentrations of compound 1. Job’s method of continuous variation established 1:1 stoichiometry for these fullerene-1 complexes. The binding constant (K) data reveal that compound 1 binds to C70 more strongly compared to C60, i.e., KC60-1 = 230 dm3·mol-1K_{C60\mbox{-}\boldsymbol{1}} = 230~\mathrm{dm}^{3}{\cdot}\mathrm{mol}^{-1} and KC70-1 = 517 dm3·mol-1K_{C70\mbox{-}\boldsymbol{1}}= 517~\mathrm{dm}^{3}{\cdot}\mathrm{mol}^{-1}. Proton NMR analysis provides very good support for strong binding between C70 and 1. Estimations of the solvent reorganization energy (R S ) suggest that the C70-1 complex is stabilized more than the corresponding C60-1 complex, with RS(C60-1) = -1.970 eVR_{S(C60\mbox{-}\boldsymbol{1})} = -1.970~\mathrm{eV} and RS(C70-1) = -2.300 eVR_{S(C70\mbox{-}\boldsymbol{1})}= -2.300~\mathrm{eV}. Molecular mechanics force field method calculations established that the binding pattern of C70 towards 1 occurs in the side-on rather than end-on orientation, and that the C70-1 complex gains 5.23 kJ⋅mol−1 of extra stabilization energy with this side-on geometrical arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号