首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LaAlO3 single crystals grown under hydrothermal conditions and co-doped with Ce and Dy atoms have been recently reported to show high thermoluminescent (TL) outputs for ultraviolet (UV) radiation fields (Oliveira et al., 2011). Due to this property, they have been considered for further investigation for applications in UV dosimetry. Encouraged by these results, we start an investigation about the TL properties of polycrystalline LaAlO3 grown by an alternative method. In this method, equimolar amounts of Al2O3 and La2O3 are sintered, producing polycrystalline LaAlO3 powder. Polycrystals doped with amounts of carbon ranging from 0.0 to 5.0 at.% were synthesized by sintering under hydrogen reducing atmosphere. After irradiation with a UV commercial lamp, the best TL outputs were observed for the undoped sample. The recorded TL glow curves show a main TL peak centered at 175 °C. The TL emission spectrum show a broad emission peak centered at 634 nm and another three narrow peaks centered at 724 nm, 738 nm and 754 nm, respectively. The undoped material show a huge TL output response for UV spectral irradiances ranging from 0.04 to 1.68 mJ cm−2 that can be fitted by a 2nd order polynomial regression. The investigation demonstrates that undoped polycrystalline LaAlO3 crystals sintered under reducing atmosphere are very attractive to be investigated as high sensitivity ultraviolet TL dosimeters.  相似文献   

2.
3.
Lithium tetraborate (Li2B4O7) is a tissue equivalent material and single crystals of this material doped with Cu are promising for dosimetric applications. In the present study highly transparent single crystals of lithium tetraborate (Li2B4O7) doped with Cu (0.5 wt%) have been grown using the Czochralski technique. The Li2B4O7:Cu crystals were studied using photoluminescence, X-ray diffraction (XRD), UV-vis transmission, time resolved fluorescence and thermoluminescence (TL) techniques. The TL readout of Li2B4O7:Cu crystals showed two well-defined glow peaks at 402 K (peak-1) and 513 K (peak-2) for a 4 K/s heating rate. While the low temperature TL peak-1 fades completely within 24 h at room temperatures, the main dosimetric peak-2 remains the same. The TL sensitivity of the grown single crystal is found to be 3.3 times that of a conventional TL phosphor, TLD-100. The Li2B4O7:Cu crystals showed a linear TL dose-response in the range from 1 mGy to 1 kGy. The TL analysis using a variable dose method revealed first order kinetics for both the peaks. Trap depth and frequency factor for peak-1 were found to be 0.81 eV and 5.2×109 s−1, whereas for peak-2 the values were 1.7 eV and 1.7×1016 s−1, respectively.  相似文献   

4.
The effect of high-dose irradiation by electron beam with nanosecond duration and by gamma-rays on thermoluminescence (TL) yield of anion-defective dosimetric Al2O3:С crystals is studied. It is shown that in a wide dose range up to 10 kGy no significant changes in the TL curve shape and the temperature position of the main dosimetric peak (T = 460 K) are observed. The TL yield of this peak is in saturation in the high-dose range 5–80 kGy. Then anomalous increase in TL yield is registered at the dose growth up to 800 kGy. With that an intensive band appears in the green spectrum region in the photoluminescence spectrum. The role of aggregate defects forming F2-type centers with the increase of TL yield in Al2O3:С crystals under high-dose irradiation is discussed.  相似文献   

5.
Ce:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios were grown by the Czochralski method from melts having compositions varying between 48.6 and 58 mol% Li2O. The Ce, Li and Nb concentrations in the grown Ce:Fe:LiNbO3 crystals were analyzed by the inductively coupled plasma atomic emission spectrometer (ICP-AES). It was found that as the [Li]/[Nb] ratio increases in the melt, the [Li]/[Nb] ratio in the crystal and the distribution coefficients of Ce ions increase also. The photorefractive properties of the Ce:Fe:LiNbO3 crystals were experimentally studied by the two-wave coupling method. The results show that as the [Li]/[Nb] ratio increases, the dynamic range decreases, but the photorefractive sensitivity and the signal-to-noise ratio improve. In a coherent volume 0.192 cm3 of a Ce:Fe:LiNbO3 crystal with [Li]/[Nb] ratio of 1.2, 3800 holograms with 800×600 pixels have been successfully multiplexed in a compact volume holographic data storage system.  相似文献   

6.
D. Kulikov§  M. Hou 《哲学杂志》2013,93(2):141-172
The properties of trapping centres in – as grown – Tl4GaIn3S8 layered single crystals were investigated in the temperature range of 10–300 K using thermoluminescence (TL) measurements. TL curve was analysed to characterize the defects responsible for the observed peaks. Thermal activation energies of the trapping centres were determined using various methods: curve fitting, initial rise and peak shape methods. The results indicated that the peak observed in the low-temperature region composed of many overlapped peaks corresponding to distributed trapping centres in the crystal structure. The apparent thermal energies of the distributed traps were observed to be shifted from ~12 to ~125 meV by increasing the illumination temperature from 10 to 36 K. The analysis revealed that the first-order kinetics (slow retrapping) obeys for deeper level located at 292 meV.  相似文献   

7.
In this paper, we present the results of a thermoluminescence study on several oxide crystals, including Y3Al5O12 (YAG), Y3Al5O12:Nd (YAG:Nd), Lu2SiO5:Ce (LSO:Ce), Y2SiO5:Ce (YSO:Ce), Gd2SiO5:Ce (GSO:Ce), PbWO (PWO), and PbWO:La (PWO:La). A phenomenon involving restoration of thermoluminescence (TL) glow peaks is found to occur in some of the crystals investigated; crystals γ-irradiated at room temperature and subsequently stored for some time in the dark at 77 K exhibit TL glow peaks in the range below room temperature. This phenomenon is caused not by a thermally or optically stimulated process, but rather as a by-product of a tunneling process. The intensity of the restored TL glow peaks measured in LSO:Ce crystals is found to be proportional both to the radiation dose and to the storage-time at low temperature. A phenomenological theoretical model is proposed, in which tunneling recombination occurs between deep electron and hole traps accompanied by the simultaneous ejection of an electron to the conduction band; some of these conduction electrons then repopulate shallow traps. An oxygen vacancy with two trapped electrons is assumed to be the deep electron trap in this model. The role of oxygen vacancies is confirmed by heating in air at 1000 °C. This model is applied specifically to LSO:Ce, and several possible candidates are suggested for shallow traps in that material.  相似文献   

8.
We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce3+ ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce3+ 5d–4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.  相似文献   

9.
The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the YAl antisite defects and Ce3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO2 + H2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.  相似文献   

10.
Congruent Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was grown by the Czochralski method in air. The occupation mechanism of the Zn2+ was discussed by an infrared transmittance spectrum. The nonvolatile holographic recording in Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was measured by two-photon fixed method. Zn(7 mol%):Ce:Cu:LiNbO3 single crystals present the faster recording time and higher light-induced scattering resistance ability comparing with Ce:Cu:LiNbO3 single crystals.  相似文献   

11.
A novel approach is reported to minimize various defect centers in Ce doped Gd3Ga3Al2O12 single crystals to improve the scintillation properties. The crystals of Gd3Ga3Al2O12 codoped with 0.2 at% Ce and B (GGAG:Ce,B) have been grown in air and argon ambient using the Czochralski technique. The scintillation light output of crystals grown in Ar ambient was significantly increased after annealing the crystals in air. The measured light output of 60000 ph/MeV for annealed crystals is the highest value reported among this class of materials. As a consequence, the energy resolution at 662 keV gamma‐rays from a 137Cs source was improved from 8% for the crystals grown in air to 6% for crystals grown in Ar and subsequently annealed in air. Further, the thermal quenching energy of photoluminescence (PL) emission was increased to be 470 meV for the annealed crystals. The thermoluminescence (TL) measurements suggest that the crystals grown in Ar ambient and post‐growth annealed in air may have a lesser concentration of trap centers which subsequently lead to the improvement in optical and scintillation properties leading to a superior detector performance. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Electron Paramagnetic Resonance(EPR), Photoluminescence(PL), Thermoluminescence (TL) and other optical studies of γ-irradiated KBr, KCl:Ce3+ single crystals. Cerium when doped into the KBr, KCl is found to enter the host lattice in its trivalent state and act as electron trap during γ-irradiation, thereby partially converting itself to Ce2+. The Photoluminescence(PL) spectra of both KCl and KBr crystals doped with Ce exhibit the strong blue emissions of Ce corresponding to 5d(2D)→2F5/2 and 5d(2D)→2F7/2 transitions. The defect centers formed in the Ce3+ doped KBr and KCl. Crystals are studied using the technique of EPR. A dominant TL glow peak at 374, 422 K and KCl:Ce3+ at 466, 475 K is observed in the crystal. EPR studies indicate the presence at two centers at room temperature. Spectral distribution under the thermoluminescence emission(TLE) and optically stimulated emission(OSL) support the idea that defect annihilation process to be due to thermal release of F electron in KBr, KCl:Ce3+ crystals. Both Ce3+ and Ce2+ emissions were observed in the thermoluminescence emission of the crystals.  相似文献   

13.
Luminescence and scintillation properties of Y3Al5O12:Ce single crystals grown from the melt by the Czochralski and horizontal directed crystallization methods in various gas media and Y3Al5O12:Ce single-crystal films grown by liquid-phase epitaxy from a melt solution based on a PbO-B2O3 flux have been comparatively analyzed. The strong dependence of scintillation properties of Y3Al5O12:Ce single crystals on their growth conditions and concentrations of YAl antisite defects and vacancy defects has been established. Vacancy defects are involved in Ce3+ ion emission excitation as the centers of intrinsic UV luminescence and trapping centers. It has been shown that Y3Al5O12:Ce single-crystal films are characterized by faster scintillation decay kinetics than single crystals and a lower content of slow components in Ce3+ ion luminescence decay during high-energy excitation due to the absence of YAl antisite defects in them and low concentration of vacancy defects. At the same time, the light yield of Y3Al5O12:Ce single-crystal films is comparable to that of single crystals grown by directed crystallization due to the quenching effect of the Pb2+ ion impurity as a flux component and is slightly lower (∼25%) than the light yield of single crystals grown by the Czochralski method.  相似文献   

14.
A series of Mg:Ce:Cu:LiNbO3 crystals has been grown by Czochralski method. Their infrared transmittance spectra and ultraviolet-visible absorption spectra were measured and discussed to investigate their defect structure. The nonvolatile holographic recording of Mg:Ce:Cu:LiNbO3 crystals was characterized by the two-photon fixed method. We found that the recording time of Mg:Ce:Cu:LiNbO3 crystals became shorter and nonvolatile diffraction efficiency decreases with the increase of Mg doping concentration, especially doping with Mg approaches and exceeds the so-called threshold. And the nonvolatility vanishes when the concentration of MgO exceeds 4 mol%. The intrinsic and extrinsic defects were discussed to explain the nonvolatile holographic properties in the Mg:Ce:Cu:LiNbO3 crystals.  相似文献   

15.
Luminescence and scintillation properties of newly discovered bromo-elpasolites Cs2NaGdBr6: Ce3+ (CNGB: Ce3+) are presented. Single crystals of CNGB: Ce3+ with dimensions up to Ø7×10 mm3 are successfully grown by the Bridgman technique. X-ray excited luminescence measurements of the grown samples showed a broad emission band in the wavelength range from 365 to 470 nm. It offered an energy resolution of 5.1% (FWHM) at 662 keV for 10% Ce sample. The light output of the investigated samples increases along with cerium concentration. A maximum light yield of ~36,800 ph/MeV is measured for the 10% Ce sample crystal. Under γ-ray excitation, CNGB: Ce3+ crystals showed three exponential decay time components. The scintillation mechanism in the sample crystal is presented.  相似文献   

16.
RE, Mn:YAP (RE=Yb and Ce) crystals with dimension of Φ 25×60 mm were successfully grown by the Czochralski method. The spectroscopic properties of RE, Mn:YAP (RE=Yb and Ce) crystals before and after γ-irradiation were investigated at room temperature. The results show that the content of Mn4+ ions was increased with the Yb3+ ions co-doping, but decreased by Ce3+ ions co-doping. Thermoluminescence (TL) spectra of the crystals indicate three steps of recombination, and the probable recombination processes were discussed.  相似文献   

17.
The motivation of this work was to produce crystals of CaSO4 doped with an unusual combination of RE elements such as terbium (Tb) and europium (Eu) in different concentrations, and analyze its thermoluminescent (TL) properties. The crystals were produced by the slow evaporation route using calcium carbonate (CaCO3) as precursor, and incorporating the dopants (Tb2O3 and Eu2O3) in a solution of sulfuric acid, that is evaporated and collected again, leaving just CaSO4:Tb,Eu crystal powder. The terbium and europium ions were incorporated in concentration ratios of 1:1, 2:1 and 5:1 (weight proportions). X-ray diffraction analyses showed that samples of doped CaSO4 exhibit only a single phase corresponding to the crystal structure of anhydrite. The radioluminescence confirmed the presence of Tb3+ and Eu2+ in the crystal matrix. The CaSO4:Tb,Eu crystal powders showed TL emission glow curves with three peaks centered around 170 °C, 270 °C and 340 °C, after irradiation with a 90Sr/90Y source. Thermoluminescent (TL) characteristics such as linearity, reproducibility and fading were evaluated. Samples produced with concentration ratio of 2:1 of Tb and Eu showed the highest TL intensity. The produced CaSO4:Tb,Eu samples present TL properties useful for dosimetric purposes.  相似文献   

18.
Scintillating properties of Ce3+-doped (Lu,Y) aluminum garnet single crystalline films (SCF) were investigated. Thin SCF films of thickness between 1 and 30 μm were grown by a liquid phase epitaxy (LPE) method in various fluxes. The α-particle excitation (mainly 5.4857 MeV line of 241Am) of pulse height spectra is used to measure scintillation response of SCF, especially peak of those α-rays which are totally absorbed in the films. Detailed studies and evaluation of scintillation measurements of large sets of Ce3+-doped SCF (Lu,Y) aluminum garnets showed that at present time (i) YAG:Ce SCF have comparable scintillation properties as YAG:Ce single crystals, especially their Nphels photoelectron yields are the same while (ii) scintillation properties of LuAG:Ce SCF do not reach those of LuAG:Ce single crystal.  相似文献   

19.
Thermoluminescence properties of lanthanum aluminum oxide (LaAlO3) crystals doped with optically active rare earth ions have been investigated for ultraviolet dosimetry purposes. Single crystals co-doped with 5.0 at.% of Ce3+ and 1.0 at.% of Dy3+ ions have two thermoluminescent (TL) peaks at 151 °C and 213 °C which can be sensitized after 1 h of UV exposure. The material shows very high TL output and linear response for UV spectral irradiance ranging from 0.04 to 1.20 mJ cm−2, that corresponds to 10 times the TL response of the Al2O3:C oxides. From 0.62 to 148.0 mJ cm−2 the dependence is linear with the logarithm of the spectral irradiance. The investigation demonstrates that LaAlO3:Ce,Dy crystals are very attractive to be investigated as UV dosimeters.  相似文献   

20.
Bulk Gd2Si2O7:Ce (GPS:Ce) single crystals obtained by Czochralski method demonstrate a high light output at γ-irradiation (3.8 times higher in comparison with Bi4Ge3O12 (BGO)), energy resolution 13% (137Cs, 662 KeV), fast decay time (41.7 ns), and good thermal stability of light output (up to 425 K). This combination of characteristics makes this scintillator very attractive for medical imaging and high-temperature applications. Light output at thermal neutron monitoring is evaluated as twice higher in comparison with Gd2SiO5:Ce (GSO). The observed rather high afterglow level (0.2% after 20 ms) and moderate energy resolution (13%) certifies a room for improvement of these parameters by further optimization of crystal quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号