首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider graphs whose edges are marked by numbers (weights) from 1 to q - 1 (with zero corresponding to the absence of an edge). A graph is additive if its vertices can be marked so that, for every two nonadjacent vertices, the sum of the marks modulo q is zero, and for adjacent vertices, it equals the weight of the corresponding edge. A switching of a given graph is its sum modulo q with some additive graph on the same set of vertices. A graph on n vertices is switching separable if some of its switchings has no connected components of size greater than n - 2. We consider the following separability test: If removing any vertex from G leads to a switching separable graph then G is switching separable. We prove this test for q odd and characterize the set of exclusions for q even. Connection is established between the switching separability of a graph and the reducibility of the n-ary quasigroup constructed from the graph.  相似文献   

2.
A topological graph is a graph drawn in the plane so that its vertices are represented by points, and its edges are represented by Jordan curves connecting the corresponding points, with the property that any two curves have at most one point in common. We define two canonical classes of topological complete graphs, and prove that every topological complete graph with n vertices has a canonical subgraph of size at least clog1/8 n, which belongs to one of these classes. We also show that every complete topological graph with n vertices has a non-crossing subgraph isomorphic to any fixed tree with at most clog1/6 n vertices.  相似文献   

3.
The subgraph homeomorphism problem is to decide if there is an injective mapping of the vertices of a pattern graph into vertices of a host graph so that the edges of the pattern graph can be mapped into (internally) vertex-disjoint paths in the host graph. The restriction of subgraph homeomorphism where an injective mapping of the vertices of the pattern graph into vertices of the host graph is already given in the input instance is termed fixed-vertex subgraph homeomorphism.We show that fixed-vertex subgraph homeomorphism for a pattern graph on p vertices and a host graph on n vertices can be solved in time 2npnO(1) or in time 3npnO(1) and polynomial space. In effect, we obtain new non-trivial upper bounds on the time complexity of the problem of finding k vertex-disjoint paths and general subgraph homeomorphism.  相似文献   

4.
Gallai conjectured that every 4-critical graph on n vertices has at least 5/3n-2/3 edges. We prove this conjecture for 4-critical graphs in which the subgraph induced by vertices of degree 3 is connected.  相似文献   

5.
Chvátal defined a graph G to be brittle if each induced subgraph F of G contains a vertex that is not a midpoint of any P4 or not an endpoint of any P4. Every brittle graph is perfectly orderable. In this paper, we prove that a graph is brittle whenever it is HHD-free (containing no chordless cycle with at least five vertices, no cycle on six vertices with a long chord, and no complement of the chordless path on five vertices). We also design an O(n4) algorithm to recognize HHD-free graphs, and also an O(n4) algorithm to construct a perfect order of an HHD-free graph. It follows from this result that an optimal coloring and a largest clique of an HHD-free graph can be found in O(n4) time.  相似文献   

6.
Given a coloring of the edges of the complete graph K on n vertices in k colors, a p-colored subgraph of Kn is any subgraph whose edges only use colors from some p element set. We show for k̿ and k\2hphk that there is always a p-colored diameter two subgraph of Kn containing at least [((k+p)n)/(2k)]\displaystyle{(k+p)n \over 2k} vertices and that this is best possible up to an additive constant l satisfying 0hl<k\2.  相似文献   

7.
Fix any positive integer n. Let S be the set of all Steinhaus graphs of order n(n − 1)/2 + 1. The vertices for each graph in S are the first n(n − 1)/2 + 1 positive integers. Let I be the set of all labeled graphs of order n with vertices of the form i(i − 1)/2 + 1 for the first n positive integers i. This article shows that the function ϕ : SI that maps a Steinhaus graph to its induced subgraph is a bijection. Therefore, any graph of order n is isomorphic to an induced subgraph of a Steinhaus graph of order n(n − 1)/2 + 1. This considerably tightens a result of Brigham, Carrington, and Dutton in [Brigham, Carrington, & Dutton, Combin. Inform. System Sci. 17 (1992)], which showed that this could be done with a Steinhaus graph of order 2n−1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 1–9, 1998  相似文献   

8.
We consider those graphs G that admit decompositions into copies of a fixed graph F, each copy being an induced subgraph of G. We are interested in finding the extremal graphs with this property, that is, those graphs G on n vertices with the maximum possible number of edges. We discuss the cases where F is a complete equipartite graph, a cycle, a star, or a graph on at most four vertices.  相似文献   

9.
A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning subgraph whose components are nontrivial paths. We prove that a simple (3,4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover we suggest a polynomial algorithm for the construction of such a path factor.  相似文献   

10.
Erd?s and Hajnal [Discrete Math 25 (1989), 37–52] conjectured that, for any graph H, every graph on n vertices that does not have H as an induced subgraph contains a clique or a stable set of size n?(H) for some ?(H)>0. The Conjecture 1. known to be true for graphs H with |V(H)|≤4. One of the two remaining open cases on five vertices is the case where H is a four‐edge path, the other case being a cycle of length five. In this article we prove that every graph on n vertices that does not contain a four‐edge path or the complement of a five‐edge path as an induced subgraph contains either a clique or a stable set of size at least n1/6. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

11.
Vertices of Degree 5 in a Contraction Critically 5-connected Graph   总被引:2,自引:0,他引:2  
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. A k-connected graph with no k-contractible edge is said to be contraction critically k-connected. We prove that a contraction critically 5-connected graph on n vertices has at least n/5 vertices of degree 5. We also show that, for a graph G and an integer k greater than 4, there exists a contraction critically k-connected graph which has G as its induced subgraph.  相似文献   

12.
Nebeský in [12] show that for any simple graph with n ≥ 5 vertices, either G or Gc contains an eulerian subgraph with order at least n - 1, with an explicitly described class of exceptional graphs. In this note, we show that if G is a simple graph with n ≥ 61 vertices, then either G or Gc is supereulerian, with some exceptions. We also characterize all these exceptional cases. These results are applied to show that if G is a simple graph with n ≥ 61 vertices such that both G and Gc are connected, then either G or Gc has a 4-flow, or both G and Gc have cut-edges. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The unit distance graphE n is the graph whose vertices are the points in Euclideann-space, and two vertices are adjacent if and only if the distance between them is 1. We prove that for anyn there is a finite bipartite graph which cannot be embedded inE n as an induced subgraph and that every finite graph with maximum degreed can be embedded inE N ,N=(d 3d)/2, as an induced subgraph.  相似文献   

14.
An n-universal graph is a graph that contains as an induced subgraph a copy of every graph on n vertices. It is shown that for each positive integer n > 1 there exists an n-universal graph G on 4n - 1 vertices such that G is a (v, k, λ)-graph, and both G and its complement G¯ are 1-transitive in the sense of W. T. Tutte and are of diameter 2. The automorphism group of G is a transitive rank 3 permutation group, i.e., it acts transitively on (1) the vertices of G, (2) the ordered pairs uv of adjacent vertices of G, and (3) the ordered pairs xy of nonadjacent vertices of G.  相似文献   

15.
In this paper we prove two results. The first is an extension of a result of Dirac which says that any set of n vertices of an n‐connected graph lies in a cycle. We prove that if V′ is a set of at most 2n vertices in an n‐connected graph G, then G has, as a minor, a cycle using all of the vertices of V′. The second result says that if G is an n+1‐connected graph with maximum vertex degree Δ then G contains a subgraph that is a subdivision of W2n if and only if Δ≥2n. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 100–108, 2009  相似文献   

16.
We prove that, in a random graph with n vertices and N = cn log n edges, the subgraph generated by a set of all vertices of degree at least k + 1 is k-leaf connected for c > 1/4. A threshold function for k-leaf connectivity is also found.  相似文献   

17.
The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. We obtain some lower bounds for the nullity of graphs and we then find the nullity of bipartite graphs with no cycle of length a multiple of 4 as a subgraph. Among bipartite graphs on n vertices, the star has the greatest nullity (equal to n − 2). We generalize this by showing that among bipartite graphs with n vertices, e edges and maximum degree Δ which do not have any cycle of length a multiple of 4 as a subgraph, the greatest nullity is . G. R. Omidi: This research was in part supported by a grant from IPM (No.87050016).  相似文献   

18.
Dedicated to the memory of Paul Erdős A graph is called -free if it contains no cycle of length four as an induced subgraph. We prove that if a -free graph has n vertices and at least edges then it has a complete subgraph of vertices, where depends only on . We also give estimates on and show that a similar result does not hold for H-free graphs––unless H is an induced subgraph of . The best value of is determined for chordal graphs. Received October 25, 1999 RID="*" ID="*" Supported by OTKA grant T029074. RID="**" ID="**" Supported by TKI grant stochastics@TUB and by OTKA grant T026203.  相似文献   

19.
We consider the so-called distance graph G(n, 3, 1), whose vertices can be identified with three-element subsets of the set {1, 2,..., n}, two vertices being joined by an edge if and only if the corresponding subsets have exactly one common element. We study some properties of random subgraphs of G(n, 3, 1) in the Erd?s–Rényi model, in which each edge is included in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, 3, 1).  相似文献   

20.
A graph is locally connected if for each vertex ν of degree ≧2, the subgraph induced by the vertices adjacent to ν is connected. In this paper we establish a sharp threshold function for local connectivity. Specifically, if the probability of an edge of a labeled graph of order n is p = ((3/2 +?n) log n/n)1/2 where ?n = (log log n + log(3/8) + 2x)/(2 log n), then the limiting probability that a random graph is locally connected is exp(-exp(-x)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号