首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new mononuclear Pd(II) complexes of the type [PdX2(tdmPz)] {X = Cl (1); Br (2); I (3); SCN (4); tdmPz = 1-thiocarbamoyl-3,5-dimethylpyrazole} have been synthesized and characterized by elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments. The thermal behavior of the complexes 14 has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 3 < 4  2 < 1. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.  相似文献   

2.
This work describes the synthesis, characterization, and the thermal behavior investigation of four palladium(II) complexes with general formulae [PdX2(mba)2], in which mba = N-methylbenzylamine and X = OAc (1), Cl (2), Br (3) or I (4). The complexes were characterized by elemental analysis, infrared vibrational spectroscopy, and 1H nuclear magnetic resonance. The stoichiometry of the complexes was established by means of elemental analysis and thermogravimetry (TG). TG/DTA curves showed that the thermodecomposition of the four complexes occurred in 3–4 steps, leading to metallic palladium as final residue. The palladium content found in all curves was in agreement with the mass percentages calculated for the complexes. The following thermal stability sequence was found: 3 > 2 > 4 > 1. The geometry optimization of 1, 2, 3, and 4, calculated using the DFT/B3LYP method, yielded a slightly distorted square planar environment around the Pd(II) ion made by two anionic groups and two nitrogen atoms from the mba ligand (N1 and N2), in a trans-relationship.  相似文献   

3.
Palladium(II) coordination compounds of general formula trans-[PdX2(isn)2], X = Cl (1), N3 (2), SCN (3), NCO (4), isn = isonicotinamide; were synthesized and characterized in solid state by elemental analysis, infrared spectroscopy, and simultaneous TG–DTA. TG experiments reveal that the compounds 14 undergo thermal decomposition in three or four stages, yielding Pd0 as final residue, according to calculus and identification by X-ray powder diffraction.  相似文献   

4.
Thermal behaviour of nickel amine complexes containing SO4 2−, NO3 , Cl and Br as counter ions and ammonia and ethylenediamine as ligands have been investigated using simultaneous TG/DTA coupled with mass spectroscopy (TG/DTA–MS). Evolved gas analyses detected various transient intermediates during thermal decomposition. The nickel ammonium sulphate complex produces NH, N, S, O and N2 species. The nickel ammonium nitrate complex generated fragments like N, N2, NO, O2, N2O, NH2 and NH. The halide complexes produce NH2, NH, N2 and H2 species during decomposition. The ligand ethylenediamine is fragmented as N2/C2H4, NH3 and H2. The residue hexaamminenickel(II) sulphate produces NiO with crystallite size 50 nm. Hexaammine and tris(ethylenediamine)nickel(II) nitrate produce NiO in the range 25.5 nm and 23 nm, respectively. The halide complexes produce nano sized metallic nickel (20 nm) as the residue. Among the complexes studied, the nitrate containing complexes undergo simultaneous oxidation and reduction.  相似文献   

5.
The synthesis, spectroscopic characterization, and thermal analysis of the compounds [Pd(X)2(mtu)(PPh3)] (X = Cl (1), SCN (2); mtu = N-methylthiourea; PPh3 = triphenylphosphine) and [Pd(X)2(phtu)(PPh3)] (X = Cl (3), SCN (4); phtu = N-phenylthiourea) are described. The thermal decomposition of the compounds occurs in two, three, or four stages and the final decomposition products were identified as Pd0 by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3>2 > 1.  相似文献   

6.
This study describes the synthesis, IR, 1H, and 13C{1H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl2(HmPz)2] 1, [PdBr2(HmPz)2] 2, [PdI2(HmPz)2] 3, [Pd(SCN)2(HmPz)2] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd0 by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 ≈ 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.  相似文献   

7.
Correlated ab initio calculations have been performed on three dipalladium(I) complexes. These compounds differ both by the metal–metal interaction and by the metal–ligand interaction. The [Pd2Cl2(μ −H2PCH2PH2)2] complex exhibits a σ overlap between the two binding metallic orbitals and has no bridging ligand. In [Pd2Cl4(μ −CO)2]2−, the leading interaction between the two palladium involves a π overlap between the metallic orbitals and goes through the two bridging CO ligands. In [Pd2Cl2(μ −CO)(μ −H2PCH2 PH2)2], a single CO ligand bridges the two palladium atoms which interact through a hybrid σ–δ overlap. The three compounds also differ by the metal–metal distances. Surprisingly enough, while the palladium atoms are formally d 9 in all these complexes, none of them is paramagnetic. We propose here a detailed analysis of the electronic structures of these compounds and rationalize their chemical structures as well as the role of back-donation in the CO bridged compounds. Finally, since highly correlated treatments are used to describe these complexes, a detailed study of the role of both non-dynamical and dynamical correlations is performed. Concerning the [Pd2Cl4(μ −CO)2]2− complex, this analysis has revealed that the complex is not bound at the lowest correlated levels of calculation and therefore dynamical correlation is alone responsible for its binding energy.  相似文献   

8.
Synthesis, spectroscopic characterization and thermal behavior of pyrazolate-bridged palladium complexes [Pd(μ-Pz)2]n (1), [Pd(μ-mPz)2]n (2), [Pd(μ-dmPz)2]n (3), [Pd(μ-IPz)2]n (4) {pyrazolate (Pz), 4-methylpyrazolate (mPz), 3,5-dimethylpyrazolate (dmPz), 4-iodopyrazolate (IPz)} have been described in this work. The exobidentate coordination mode of pyrazolato ligands in 14 was inferred on basis of IR spectroscopic evidences. TG investigations indicated that the introduction of substituents at the 4 position in the pyrazolyl moiety into coordination polymers do not affect significantly their thermal stability, whereas at the 3 and 5 position reduced the stability of the main chain. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.  相似文献   

9.
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclobutanedicarboxylic acid (H2-cbdc) generates 1D and 2D hydrogen-bonded infinite chains [Ni(L)(H-cbdc)2] (1) and [Cu(L)(H-cbdc)2] (2). (H-cbdc = cyclobutane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structure of 1 shows a distorted octahedral coordination geometry around the nickel(II) ion, with four secondary amines and two oxygen atoms of the H-cbdc ligand at the trans position. In 2, the coordination environment around the central copper(II) ion shows a Jahn–Teller distorted octahedron with four Cu–N bonds and two long Cu–O distances. The cyclic voltammogram of the complexes undergoes two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cbdc ligand.  相似文献   

10.
Metal cage complexes [(Me2N)3MO]4 (M = Nb, 3; Ta, 4) have been prepared from the reactions of M(NMe2)5 (M = Nb, 1; Ta, 2) with water. Single crystal X-ray diffraction studies of 3 and 4 reveal that they adopt cubane-like structures with M–O bridges. Variable-temperature NMR studies of –NMeAMeB rotations in 3 and 4 have been performed to give the following activation parameters for the exchanges: ΔH  = −1.4(1.1) kJ/mol, ΔS  = −209(8) J/mol K, \Updelta G 30 8  \textK 1 = 6 4( 2)  \textkJ/\textmol \Updelta G_{{_{{ 30 8\;{\text{K}}}} }}^{{^{ \ne } }} = 6 4\left( 2\right)\;{\text{kJ}}/{\text{mol}} for 3, and ΔH  = −0.9(1.2) kJ/mol, ΔS  = −2.1(0.2) × 102 J/mol K, \Updelta G 30 8  \textK 1 = 6 3( 6)  \textkJ/\textmol \Updelta G_{{ 30 8\;{\text{K}}}}^{{^{ \ne } }} = 6 3\left( 6\right)\;{\text{kJ}}/{\text{mol}} for 4.  相似文献   

11.
The triazenide, 1-[(2-carboxyethyl)benzene]-3-[2-pyridine]triazene (HL), has been synthesized. In the presence of Et3N, the reaction of HL with Cu(OAc)2·H2O or CuCl2·2H2O gives the tetranuclear copper(II) complexes {Cu4(L)22-OH)2(OAc)4} 1 and {Cu4L44-O)Cl2} 2, respectively. The X-ray crystal structures of both complexes have been obtained. Magnetic studies indicate significant antiferromagnetic coupling between the copper(II) centers for both complexes, with coupling constants (J) of −493.4 cm−1 for 1 and −165 cm−1 for 2.  相似文献   

12.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

13.
A Schiff base ligand containing thiocarbamide group of 4-phenyl-1-(4-methoxyl-1-phenylethylidene)thiosemicarbazide (HL) and its three mononuclear metal complexes of ZnL2 (1), NiL2 (2), and CuL2 (3) have been synthesized. Elemental analysis, IR, and X-ray single crystal diffraction characterizations for the ligand and the three complexes have been carried out. In the three complexes, the central metallic ions of Zn2+, Ni2+, and Cu2+ coordinate with two deprotonated ligands of L, respectively. In 1, Zn2+ ion adopts a distorted tetrahedral geometry, while in 2 and 3, both the Ni2+ and Cu2+ ions possess distorted square planar configurations. For the four compounds, UV–Vis spectra have been measured and DFT calculations at B3LYP/LANL2DZ level of theory prove that the electronic spectra of HL and 1 are corresponding with electronic transitions of n → π* and π → π* in the ligand itself and the electronic spectra of 2 and 3 are attributed to intraligand electronic transitions as well as dd electronic transitions. Electrochemical investigations reveal that the different metal–ligand interactions have changed the peak shapes and peak locations, which are corresponding with the DFT-B3LYP/LANL2DZ calculational results. Fluorescence spectra measurements indicate that the ligand emits purple fluorescence and the complex 1 emits stronger blue fluorescence, while the complexes 2 and 3 quench fluorescence. The thermal analyses result show that the three complexes undergo two similar decomposition processes because of their similar geometric configurations.  相似文献   

14.
By using the macrocyclic oxamido-copper complex CuL (H2L = 2,3-dioxo-5,6:13,14-dibenzo-9,10-(O)cyclohexyl-1,4,8,11-tetraazacyclo-tetradeca-7,12-diene) as precursor, two new trinuclear complexes with the formulas [(CuL)2Mn(ClO4)2] (1) and [(CuL)2Co(ClO4)2] (2) have been synthesized and structurally characterized. H-bonds are found between the molecules, which link adjacent trinuclear units together to form a unique one-dimensional structure. The temperature dependence of the magnetic susceptibility for the complexes was analyzed by means of the Hamiltonian leading to J = −14.66 cm−1 and J = −22.9 cm−1 for 1 and 2, respectively. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
4-Chloro-2-methoxybenzoates of heavy lanthanides(III) and yttrium(III) were obtained as mono-, di-, tri-or tetrahydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Er, n=2 for Ln=Tb, Dy, Tm, Y, n=3 for Ln=Ho and n=4 for Yb and Lu. The complexes were characterized by elemental analysis, FTIR spectra, TG, DTA and DSC curves, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate chelating ligand. All complexes are polycrystalline compounds. The values of enthalpy, ΔH, of the dehydration process for analysed complexes were also determined. The solubilities of heavy lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−4 mol dm−3. The magnetic moments were determined over the range of 76–303 K. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.  相似文献   

16.

Abstract  

Three novel heterometallic microporous coordination polymers {M(Hnico)3M′} n (1, M = Co, M′ = K; 2, M = Ni, M′ = K; 3, M = Co, M′ = Na, Hnico is the anion of 2-hydroxy-nicotinic acid, where the proton is transferred from the phenolate hydroxy group to the nitrogen atom of imine pyridine ring) were synthesized by hydrothermal reaction between M(Ac)2·4H2O, M′OH and a multifunctional organic aromatic H2nico ligand and characterized by IR spectrum, elemental analysis, raman spectrum and the single crystal X-ray diffractions. In complexes 13, the M2+ ions linked three different Hnico ligand formed [M(Hnico)3] subunit which further interlinked the six-coordination M′+ cation constructed 3D network. The network topology of 13 can be simplified a rare 3D (4,4)-connected (41263) net.  相似文献   

17.
Four manganese(II) coordination compounds with bis(1-methylimidazol-2-yl)ketone (BIK) of general formula Mn(BIK)2X2 (X = Cl, Br, NO3, ClO4) were synthesized and characterized by elemental analysis, by UV–vis, and FTIR spectroscopies to be compared with the literature data. Following our previous thermoanalytical studies on imidazole-substituted coordination compounds, the thermal behavior of the synthesized Mn(II) complexes was investigated using TG and DTG techniques: the thermal profile is characterized by three substantial consecutive releasing steps for all the three complexes and the releasing supposed behavior is confirmed by EGA analysis performed by coupling the TG analyzer to an MS spectrometer. In particular, the first step is ascribed to the release of the two anions, followed by the loss of four methyl groups (side chains of the ligand) and two bridge-carbonyl groups. The residual tetra-imidazole manganese compound decomposes in a final step to give MnO as the final residue. Both the initial decomposition temperatures and the kinetic rate constants associated to the first decomposition step indicated a higher stability of the Mn(BIK)2Cl2 complex, the bromide complex being very close to the chloride one (first-step thermal stability: ClO4 <NO3 ≤Br <Cl). Finally, the three-dimensional diffusion reaction model (D3) was selected to describe the first decomposition step for all the four complexes examined.  相似文献   

18.
Metallosurfactant complexes of the type trans- [Co(DH)2(HA)X], where DH = Dimethyl glyoxime, HA = Hexadecyl amine and X = Cl, Br, I, N3 , NO2 or SCN, were synthesized and characterized by physico-chemical and spectroscopic methods. In addition, the single crystal X-ray structure of the ionic complex trans-[Co(DH)2(HA)2][Co(DH)2(I)2)] is presented. The critical micelle concentration values of the complexes in ethanol were obtained by measuring the absorption at 290 nm. Specific conductivity data (at 303–313 K) served for the evaluation of the thermodynamics of micellization ) \left( {\Updelta G^{0}_{{{\text{m}}}}, \Updelta H^{0}_{{{\text{m}}}}, \Updelta S^{0}_{\text{m}} } \right) . Steady-state photolysis, cyclic voltammetry and biological activities of the complexes were studied. The compounds were tested for antimicrobial activity.  相似文献   

19.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

20.
A bidentate ligand, 5-chloro-2-(phenylazo)pyridine (Clazpy), and its two polypyridyl ruthenium(II) complexes, [Ru(Clazpy)2bpy]Cl2·7H2O (1) and [Ru(Clazpy)2phen]Cl2·8H2O (2), were synthesized and characterized. The DNA-binding properties of these complexes with DNA, the breast cancer susceptibility gene 1 (BRCA1), and the pBIND plasmid DNA were probed by photocleavage, electronic absorption titration, ethidium bromide quenching, and thermal denaturation. Both complexes were found to bind to the BRCA1 fragment through the intercalative mode into the base pairs of DNA, and the DNA-binding constants (Kb) for 1 and 2 were 7.0 × 104 M−1 and 5.1 × 105 M−1, respectively. In addition, both complexes enhanced the single-stranded cleavage of the plasmid DNA. Under comparable experimental conditions, 2 cleaved DNA more effectively than 1, in a dose–response manner. The data indicated that the binding affinity of these two complexes to DNA was dependent on the aromatic planarity and hydrophobicity of the intercalative polypyridyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号