首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasses of the 25Ln2O3-25B2O3-50GeO2 composition (mol%) where Ln = (1 − x − y) La, xEr, yYb, with an addition of Al2O3 have been obtained and their luminescent characteristics examined. Probabilities of spontaneous emission, peak sections of the induced radiation and quantum yields of luminescence corresponding to the 2F5/2 → 2F7/2 transition of Yb3+ ions and the 4I13/2 → 4I15/2 transition of Er3+ ions have been defined. Quantum yield of Yb3+ luminescence for glasses with low Yb2O3 concentration reaches values closed to 100%. The luminescence spectrum of Er3+ ions exhibits a broad peak at about 1530 nm with effective width more than 80 nm when excited by irradiation at λ = 977 nm. Spontaneous emission probability and peak stimulated radiation section for Er3+ luminescence band 4I13/2 → 4I15/2 were determined to be equal to 175 s−1 and 4.9 × 10−21 cm2 respectively. Effective quenching of both rare-earth activators by oscillations with ν ≈ 2630 and 2270 cm−1 was found. These oscillators, most likely, represent OH-groups connected by a hydrogen bond with non-bridging oxygen atoms in the borogermanate matrix.  相似文献   

2.
Er2O3-doped Bi2O3-B2O3-Ga2O3 glasses were prepared by the conventional melt-quenching method, and the Er3+:4I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. when the Er2O3 concentration increases from 0.03 to 3.0 mol%, the measured lifetime of Er3+:4I13/2 level decrease from 2.24 to 0.9 m s, and from 0.25 to 0.20 m s for the Er3+:4I11/2 level. The fast energy migration among Er3+ ions cause the reduction of lifetime of the 4I13/2 level, whereas the change in the 4I11/2 level is mainly due to a cooperative upconversion process (4I11/24I11/2) → (4F7/24I15/2). Based on the dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+:4I13/2 ↔ 4I13/2 was calculated to be 32 × 10−40 cm6 s−1.  相似文献   

3.
Q. Qian  G.F. Yang  Z.M. Yang  Z.H. Jiang 《Journal of Non》2008,354(18):1981-1985
Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses have been investigated for developing 1.5-μm broadband fiber amplifiers. An intense 1.5-μm near infrared emission with a broad full width at half maximum (FWHM) of 88 nm has been obtained for Er3+-doped 5Na2O-20Sb2O3-35B2O3-40SiO2 glass upon excitation with a 980 nm laser diode. The obtained emission cross-section of the 4I13/2 → 4I15/2 transition and the lifetime of the 4I13/2 level of Er3+ ions are 6.8 × 10−21 cm2 and 0.36 ms, respectively. It is noted that the product of the emission cross-section and the FWHM of the glass, σe × FWHM, is as great as 598.4 × 10−21 cm2 nm, which is comparable or higher than that of Er3+-doped bismuth-based and tellurite-based glasses. These special optical properties encourage in identifying them as important materials for potential applications in high performance optics and optical communication networks.  相似文献   

4.
We measured the 1.5 μm emission spectra corresponding to 4I13/2 → 4I15/2 transition of Er3+ in borosilicate glass within the temperature range from 11 to 300 K. The spectral components emitting from the lowest and upper Stark levels of 4I13/2 state were distinguished by analyzing the spectra with normalized area. The effect of optical properties of the spectral components on the 1.5 μm emission bandwidth is investigated. The results indicate that to search for a host with higher spontaneous emission probability of the upper Stark levels of 4I13/2 state for Er3+ ions is very important to broadening of the 1.5 μm emission band. An equivalent model of four-level system is presented and applied to explain the spectral shape and temperature characteristics of the 1.5 μm emission band.  相似文献   

5.
Er3+-doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Ω2 = 2.95 × 10−20, Ω4 = 0.91 × 10−20, and Ω6 = 0.36 × 10−20 cm2. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.  相似文献   

6.
The upconversion properties of Er3+ ions were studied for heavy metal oxyfluoride tellurite glass hosts xPbF2-(100−x)TeO2 under 975 nm excitation. The intense green (529 and 545 nm) and relative weak red (657 nm) emissions corresponding to the transitions 4S3/2 → 4I15/2, 2H11/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively, were simultaneously observed at room temperature. The PbF2 content has an important influence on upconversion luminescence emission. With increasing PbF2 content, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green (545 nm) emission increases significantly. These results indicate that PbF2 has more influence on the green (545 nm) emission than the green (529 nm) and red (657 nm) emissions. The intense green emission observed suggest that Er3+-doped heavy metal oxyfluoride tellurite glasses can become candidates for developing upconversion optical devices.  相似文献   

7.
In this paper we investigate the energy transfer processes in Tm3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength ∼800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified. A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at ∼660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er1(4I11/2) + Er2(4I13/2) → Er1(4I15/2) + Er2(4F9/2) to the process. Energy migration among pumped 4I9/2 level reducing the efficiency of the upconversion emission rate (3H11/2, 4S3/2, and 4F9/2) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported.  相似文献   

8.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/24I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed.  相似文献   

9.
A laser crystal Er3+:YbVO4 has been grown by the Czochralski method with excellent quality. The rocking curve from the (0 0 4) diffraction plane of the as-grown Er3+:YbVO4 crystal was measured and the full-width at half-maximum value was found to be 19.80 in. for the (0 0 4) face. The effective segregation coefficient of Er3+ was studied by X-ray fluorescence and the crystal structure was determined by means of X-ray diffraction analysis. The polarized absorption spectra and the fluorescence spectra of Er3+:YbVO4 were measured at room temperature. The spectral parameters were calculated based on the Judd–Ofelt theory, and the intensity parameters Ω2, Ω4 and Ω6 are found to be 5.50×10−20, 1.96×10−20 and 2.34×10−20 cm2, respectively. The emission cross-section has been calculated by the Fuechtbauer–Ladenbury method. The spectroscopic parameters of Er3+:YbVO4 are compared with other typical laser hosts.  相似文献   

10.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

11.
The density of the vacancy-type defect in Er doped GaN was measured by positron annihilation spectrometry (PAS) and the correlation between the intensity of the Er-related luminescence was studied. A luminescence peak at 558 nm originating from 4S3/2 to 4I15/2 transition of Er3+ was observed in Er-doped GaN. The intensity of the luminescence increased with increasing Er concentration and showed the maximum with the Er concentration of around 4.0 at%. The PAS measurements showed that the vacancy-type defect density increased with increasing Er concentration up to 4 at%, and around 4 at% of Er, the formation of defect complex such as VGaVN was suggested. The contribution of the defect to the radiative recombination of intra-4f transition of Er is discussed.  相似文献   

12.
《Journal of Non》2007,353(13-15):1414-1417
Absorption, emission, excitation spectra and the lifetime of the 4S3/2 excited luminescent state of Er3+ ions in a fluorine containing (lead, lanthanum)–tellurite glass have been studied. The glass exhibits a strong green luminescence upon excitation through 380 nm (4I15/2  4G11/2) absorption band of its Er3+ ions. The spectrum consists of a strong green component in the wavelength range 534–553 nm due to luminescence transitions 2H11/2  4I15/2 and 4S3/2  4I15/2 and a very weak red component in the range 650–710 nm due to 4F9/2  4I15/2 transition. The Stark split components of the 4S3/2 state are not very clear in the spectrum, but the biexponential luminescence decay of the 4S3/2 state confirms the presence of the Stark levels. A rapid conversion of the upper Stark level to the lower level is also evident from the decay kinetics which helps greater number of ions to populate in the lower stark level of the 4S3/2 state. Thus, the present study indicates that the glass may be a suitable candidate for use as a laser medium in making a solid state green laser by pumping the later by normal route.  相似文献   

13.
Transparent amorphous and glass-ceramics waveguides in the system ZrF4-LaF3-ErF3-AlF3 (ZELA) have been fabricated by physical vapor deposition (PVD). The ceramming process was studied by means of X-ray diffraction and transmission electron microscopy for different deposition temperatures. With increasing deposition temperature, formation of LaxEr1−xF3 nanocrystals with x ∼ 0.3 was observed. The decay curves of the 4I13/2 level in the glass-ceramics with 14.5 mol% Er3+ gave evidence of the presence of erbium both in the amorphous matrix (τ = 8.6 ms) and in the crystal phase (τ = 2.2 ms). The decrease of lifetime was due to clustering of erbium incorporated in LaF3 crystal lattice. No significant increase of attenuation loss was detected after waveguide cerammization (1.3 dB/cm at 1304 nm).  相似文献   

14.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

15.
Copper phthalocyanine (CuPc) thin-film transistors (TFTs) have been fabricated using spin-coated polymeric gate insulators, including polymethyl methacrylate (PMMA) and a novel poly(methylmethacrylate-co-glycidylmethacrylate) (P(MMA-co-GMA)). These devices behaved fairly well and showed satisfactory p-type electrical characteristics. The transistor with P(MMA-co-GMA) gate insulator showed higher field-effect mobility, μFET = 1.22 × 10−2 cm2/V s, larger on/off current ratio, Ion/Ioff = 7 × 103 and lower threshold voltage, VT = −8 V, compared with the transistor with PMMA gate insulator (μFET = 5.89 × 10−3 cm2/V s, Ion/Ioff = 2 × 103 and VT = −15 V). The higher mobility of CuPc on P(MMA-co-GMA) was attributed to better ordering and enhanced crystallinity within the CuPc film and the better CuPc/P(MMA-co-GMA) interface, as observed by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. The correlation between the structural properties and the device performance of CuPc films grown on different polymeric gate insulators is discussed.  相似文献   

16.
A series of tellurite glasses of composition, 75TeO2–20ZnO–(5 ? x)La2O3xEr2O3 (x = 0.05, 0.1, 0.3, 0.6, 1.0, 2.0, and 3.0 mol%) with different hydroxl content were prepared. The effect of Er3+ and OH? groups concentration on the emission properties of Er3+: 4I13/2  4I15/2 transition in tellurite glasses was investigated. The constant KOH–Er for Er3+ in tellurite glasses, which represents the strength of interaction between Er3+ and OH? groups in the case of energy migration, was about 14 × 10?19 cm4 s?1. The interaction parameter CEr,Er for the migration rate of Er3+: 4I13/2  4I13/2 transition in tellurite glass was 46 × 10?40 cm2, which indicates that concentration quenching in Er3+-doped modified tellurite glass for a given Er3+ concentration is much stronger than in silicate and phosphate glasses.  相似文献   

17.
A new transparent oxyfluoride glass ceramic with improved luminescence   总被引:1,自引:0,他引:1  
Yunlong Yu  Feng Liu  En Ma 《Journal of Non》2007,353(4):405-409
A new type of glass ceramic containing BaF2 nano-crystals was prepared by melt quenching. Differential scanning calorimetry, X-ray diffraction and transmission electron microscopy were used to study its thermal behaviors and structural characteristics. Based on Judd-Ofelt theory, the spectroscopic properties of the 4I13/2 → 4I15/2 transition of Er3+ in glass ceramic were evaluated. Notably, it is found that the fluorescence lifetime in the present system is much longer than that in most other glasses and glass ceramics. A comparative study on luminescence performance suggests that the obtained glass ceramic is a promising material for Er3+ doped fiber amplifiers.  相似文献   

18.
Erbium-doped glasses with composition xGeO2-(80 − x)TeO2-10ZnO-10BaO were prepared by melt-quenching technique. The phonon sideband spectra and the optical absorption band edges for the host matrix were confirmed by means of the spectral measurements. Standard Judd-Ofelt calculations have been completed to these glasses. The dependence of up-conversion and infrared emission under 980 nm excitation on the glass composition was studied. The quantum efficiencies for the 4I13/2 → 4I15/2 transition of trivalent erbium in the glasses were estimated.  相似文献   

19.
The violet (∼400-410-nm) fluorescence in Er3+:ZB(L)AN glasses has been previously attributed to transitions originating from the 2H9/2 and 2P3/2 levels. The study reported here found that, in high Er3+ concentrations and with 800-nm excitation, a significant source of violet fluorescence around 407-nm was due to the previously unreported 4G9/2 → 4I9/2 transition. The study also established that, under these conditions, a three-ion energy transfer process originating in the 4I9/2 level is responsible for populating of the fluorescing 4G9/2 level.  相似文献   

20.
Erbium-doped PZG fluoride glass (lead-zinc-gallium) has been studied using site-selective spectroscopy associated to frequency-resolved spectroscopy. Possibilities of site-selective emission using frequency-resolved spectroscopy are discussed. The existence of two crystallographic sites is demonstrated and the spectroscopic properties of Er3+ in each site is analyzed. The minority site distribution peaks at high energy at 6575 cm−1, its 4I13/2 lifetime is non-exponential and lower than 5 ms and its ground state spreads over 302 cm−1. The majority site distribution peaks at 6530 cm−1, its 4I13/2 lifetime is 11 ms and its ground state spreads over 333 cm−1. The structural origin of these two sites is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号