首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study focuses on characterizing PVA: NH4X (X = Cl, Br, I) proton conducting polymer electrolyte prepared by solution casting technique using XRD, FTIR and ac impedance spectroscopic studies. The XRD patterns of all the prepared polymer electrolytes reveal the amorphous nature of the films. The FTIR spectroscopic study indicates the detailed interaction of PVA with proton. From ac impedance spectroscopic studies, it has been found that PVA doped with NH4I have high ionic conductivity (2.5 × 10−3S cm−1) than PVA doped with NH4Br (5.7 × 10−4S cm−1) and NH4Cl (1.0 × 10−5S cm−1) polymer electrolytes. This is due to the large anionic size and low lattice energy of NH4I (in comparison with NH4Br and NH4Cl).The temperature dependence of ionic conductivity for all the PVA: NH4X (X = Cl, Br, I) polymer films obey Arrhenius equation. Ionic transference number measured has been found to be in the range of 0.93-0.96 for all the polymer electrolytes proving that the total conductivity is mainly due to ions.  相似文献   

2.
This paper describes the preparation and characterization of lithium fluoroalkylphosphate-containing composite polymer electrolyte based on a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix. A mixture of ethylene carbonate and diethyl carbonate was used as a plasticizing agent and nanoscopic Al2O3 as a filler. The membranes were characterized by ac impedance, SEM, DSC, FTIR and fluorescence. An electrolyte with 2.5 wt% Al2O3 exhibited a conductivity of 9.8 × 10−4 S cm−1 at ambient temperature. It was found that filler contents above 2.5 wt% rendered the membranes less conducting.  相似文献   

3.
Poly (N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH4SCN) based polymer films with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte has high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. From the admittance plot, the activation energy has been found to be low for 20 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε), dissipation factor (tan δ) and electric modulus (M) of the samples.  相似文献   

4.
The crystal growth kinetics of antimony trisulfide in (GeS2)0.1(Sb2S3)0.9 glass has been studied by microscopy and DSC. The linear crystal growth kinetics has been confirmed in the temperature range 492 ? T ? 515 K (EG = 405 ± 7 kJ mol−1). The applicability of standard growth models has been assessed. From the crystal growth rate corrected for viscosity plotted as a function of undercooling it has been found that the most probable mechanism is interface controlled 2D nucleated growth. The non-isothermal DSC data, corresponding to the bulk sample, can be described by the Johnson-Mehl-Avrami equation.  相似文献   

5.
Xinwei Wu 《Journal of Non》2011,357(15):2846-3750
Sodium tracer diffusion coefficients, DNa*, have been measured in sodium borosilicate glasses of the type (Na2O)0.2[(BO1.5)x(SiO2)1 − x]0.8 as a function of temperature and the composition parameter x. In these glasses, which can alternatively also be described by using the formula Na2O·(2B2O3)x·(4SiO2)1 − x, one network former unit, SiO2, is replaced by another one, BO1.5, while keeping the sodium concentration constant. At constant temperature, the tracer diffusion coefficient of sodium as a function of x has a shallow minimum at about x = 0.7. At temperatures below about 310 °C the temperature dependences of the measured tracer diffusion coefficients are of Arrhenius-type; at higher temperatures one observes an increase in the temperature dependence with increasing temperature. The activation energy derived from sodium tracer diffusion data for temperatures up to about 310 °C increases about linearly with increasing x from about 70 to 80 kJ/mol. The pre-exponential factor as a function of x varies by about one order of magnitude and has a minimum at about x = 0.4. Values derived for the Haven-ratio are smaller than one and show a shallow minimum as a function of x at around x = 0.75. Furthermore, it was investigated whether there is a significant, directly measurable uptake of water during annealing in moist atmospheres and whether water taken up from moist atmospheres can influence the diffusion of sodium.  相似文献   

6.
SBA-15 mesoporous material was prepared by the simple hydrothermal process and added to poly(ethylene oxide) (PEO) and lithium percholorate (LiClO4) as a filler. X-ray Diffractometry (XRD), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to determine the characteristics of the composite polymer electrolyte. The SEM of the electrolyte containing 10 wt% of SBA-15 confirms the highest miscibility and amorphous nature. SBA-15 doped (PEO + LiClO4) polymer electrolytes have shown improved conductivity over the pure PEO and (PEO + LiClO4) electrolyte. The mesoporous SBA-15 acted as crystal cores and fined the crystallites thus decreasing the crystallinity, which provided a much more continuous amorphous domain for Li+ ions to move easily in the (PEO + LiClO4) electrolyte.  相似文献   

7.
Transport property and structural investigation have been carried out on newly synthesized Ag+ ion conducting composite electrolyte system. The composite electrolyte system (1 − x)[0.75AgI:0.25AgCl]:xTiO2, where 0 ? x ? 0.5 (in molar weight fraction) has been synthesized by melt quenching and annealing methods. The chemical compound TiO2 (second phase dispersoid) dispersed in different compositions in a quenched (0.75AgI:0.25AgCl) mixed system/solid solution; this solid solution was used as a first phase host salt in place of AgI. The different preparation routes were adopted for the composite electrolyte system. Composition x = 0.1 exhibited highest conductivity at room temperature. The composite system 0.9[0.75AgI:0.25AgCl]:0.1TiO2 was synthesized at different soaking times by melt quenching method. The system exhibited optimum conductivity at 20 min soaking time (σrt ≈ 1.4 × 10−3 S/cm). The ac conductivity has been measured from Z′-Z″ (Cole-Cole) complex impedance plots using impedance spectroscopic (IS) technique. The electrical conductivity as a function of temperature and frequency has been studied, and activation energy Ea, was calculated from Arrhenius plots for all compositions (0 ? x ? 0.5). The dc conductivity value has been evaluated from Log σ vs. log f plots. Structural characterization studies were carried out by X-ray diffraction (XRD) and differential thermal analysis (DSC) techniques.  相似文献   

8.
The glasses with the compositions of 21.25RE2O3-63.75MoO3-15B2O3 (RE: Sm, Gd, Dy) were prepared and the formation of β′-RE2(MoO4)3 ferroelectrics was confirmed in the crystallized glasses obtained through a conventional crystallization in an electric furnace. The features of the glass structure and crystallization behavior were clarified from measurements of Raman scattering spectra. Continuous-wave Nd:YAG laser with a wavelength of 1064 nm (laser power: 0.6-0.9 W, laser scanning speed: S = 1-16 μm/s) was irradiated to 10.625Sm2O3-10.625Gd2O3 (or Dy2O3)-63.75MoO3-15B2O3 glasses, and the structural modification was induced at the glass surface. At the scanning speed of S = 10 μm/s, crystal lines consisting of β′-Gd2−xSmx(MoO4)3 or β′-Dy2−xSmx(MoO4)3 crystals were patterned on the glass surface. It was found that those crystal lines have the surface morphology with periodic bumps. At S = 1 μm/s, it was found that crystal lines consist of the mixture of paraelectric α-Gd2−xSmx(MoO4)3 and ferroelectric β′-Gd2−xSmx(MoO4)3 crystals, indicating the phase transformation from the β′ phase to the α phase during laser irradiation. Homogeneous crystal lines with β′-RE2(MoO4)3 ferroelectrics have not been written in this study, but further research is continuing.  相似文献   

9.
On the basis of the known data on the (NH4)H2PO4-KCl-KNO3-H2O system, 65.0 × 9.0 × 8.0-mm3-large crystals of the [K0.75(NH4)0.25]H2PO4 solid solutions are grown on seed by the method of temperature decrease. It is shown that the 60.0 × 17.0 × 10.0 mm3-large KH2PO4 crystals contain impurities: 6.0 × 10−3 wt % Li and 0.1 wt % Na. __________ Translated from Kristallografiya, Vol. 50, No. 4, 2005, pp. 761–764. Original Russian Text Copyright ? 2005 by Soboleva.  相似文献   

10.
The development of polymeric systems with high ionic conductivity is one of the main objectives in Li rechargeable battery. In the present study, the different composition of PVA-LiCF3SO3 polymer electrolyte has been prepared by solution cast technique using DMSO as solvent. The FTIR study confirms the polymer-salt complex formation. The amorphous nature of the polymer has been confirmed by XRD analysis. DSC measurements show decrease in Tg with increasing salt concentration. The temperature dependent conductivity obeys Arrhenius relationship. The maximum conductivity has been observed in the order of 7 × 10− 4 S cm− 1 for 25 mol% of LiCF3SO3. The activation energy has been found to be 0.16 eV. The two peaks have been observed in the dielectric loss spectrum which shows two types of relaxation α and β.  相似文献   

11.
Investigations on ion transport behavior of a new fast Ag+ ion conducting composite electrolyte system: 0.85[0.75AgI:0.25AgCl]: 0.1CeO2 are reported. An alternate host: ‘[0.75AgI:0.25AgCl] mixed system/solid solution’ has been used as first-phase host matrix salt, in place of the traditional host AgI, while the micron-size particles of an insulating and chemically inert CeO2 as second-phase dispersoid. The soaking time, plays important role in determining the conductivity enhancement in the composite system. The system: 0.85[0.75AgI:0.25AgCl]:0.1CeO2 prepared at soaking time ∼10 min. exhibited optimum conductivity:σrt ∼ 1.2 × 10−3 S cm−1 at room temperature, which is an order of magnitude higher than that of the pure host. Structural characterization studies were performed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Temperature dependent measurement on the basic ionic parameters viz. conductivity (σ), ionic mobility (μ), mobile ion concentration (n), room temperature ionic transference number (tion) and ionic drift velocity (vd) have been carried out on the system.  相似文献   

12.
The growth and characterization of YAl3(BO3)4 (YAB), a potential nonlinear optical crystal for the fourth harmonic generation of Nd:YAG laser, was reported. Using top-seeded solution growth method, a YAB crystal with the dimensions of 16×16×18 mm3 was obtained from B2O3–Li2O flux system. The advantages of this flux system and the growth process were discussed in detail. The as-grown YAB crystal was verified by powder X-ray diffraction. The transparency spectra indicated that the cut-off edge of the as-grown YAB was 170 nm. The fourth harmonic generation of a frequency doubled Nd:YAG laser, from 532 to 266 nm, was carried out with a YAB crystal doubler for the first time. Output pulse power obtained was 2.4 mW at 266 nm and the conversion efficiency from 532 to 266 nm was about 15.6%.  相似文献   

13.
Thin films (1-10 μm thickness) of nanocomposites (NC) based on organic coordinated compound (OCC) Eu(TTA)2(Phen3PO)2NO3 (where TTA is thenoyltrifluoroacetonate (C8H5F3O2S), Phen - 1,10-phenanthroline (C12H8N2)) and polymer - polyvinylpyrrolidone ((C6H9NO)n) (PVP)) were obtained by chemical methods. NC were characterized by measurements of optical transmission, and photoluminescence (PL) at different concentrations of Eu(TTA)2(Phen3PO)2NO3 in NC. Using the optical transmission spectra, the characteristic parameters of NC such as threshold of absorbance and the position of the absorption edge on the concentration of the OOC in NC, etc., were determined. The light displacement of threshold absorption to infrared region was observed with increasing of concentration of coordinated material in NC. It was established that the excitation spectrum at which the photoluminescence in NC take place cover the range of wavelength from 200 to 410 nm. The PL of nanocomposites was detected as specific for internal transitions 4f-4f of the Eu3+ ion 5D0  7Fi (i = 0,1,2,3 and 4) centred at 537, 580, 615, 650 and 702 nm, respectively at T = 300 K. The dominant PL was observed at 615 nm and its halfwidth is less than 10 nm. The intensity of photoluminescence at 615 nm of NC is 2 times higher than the value of intensity of PL of Eu(TTA)2(Phen3PO)2NO3 powders at equal conditions of excitation.  相似文献   

14.
Sodium tracer diffusion coefficients, D?Na, have been measured in sodium borosilicate glasses of the type (Na2O)0.2(B2O3)y(SiO2)0.8−y as a function of temperature and the composition parameter y. At constant temperature, the tracer diffusion coefficient of sodium decreases as y increases. The activation enthalpy derived from sodium tracer diffusion data for temperatures up to about 350 °C increases about linearly with increasing values of y from about 70 to 100 kJ/mol. The pre-exponential factor of the sodium tracer diffusion coefficient as a function of y varies by about one order of magnitude and has a minimum at near y = 0.3.  相似文献   

15.
Uranyl triacetate complexes (Cs0.5Ba0.25)[UO2(CH3COO)3] (I) and Ba0.5[UO2(CH3COO)3] (II) are synthesized for the first time and their structures are determined by X-ray diffraction. Both compounds crystallize in the cubic crystal system. The crystal data are as follows: a = 17.3289(7) ?, V = 5203.7(4) ?3, space group I213 and Z = 16 (I); a = 17.0515(8)?, V = 4957.8(4) ?3, space group I $ \bar 4 $ \bar 4 3d, and Z = 16 (II). In I and II, as in all uranyl triacetates studied earlier, the coordination polyhedron of the uranium atom is a hexagonal bipyramid whose vertices are occupied by the oxygen atoms of the uranyl and three acetate groups. The uranium-containing group belongs to the AB 301 (A = UO22+, B 01 = CH3COO) crystal chemical group of uranyl complexes. It was found that compound II is isostructural to the (Rb0.50Ba0.25)[UO2(CH3COO)3] studied earlier.  相似文献   

16.
S. Ramesh  Chiam-Wen Liew 《Journal of Non》2011,357(10):2132-2138
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide), BmImTFSI based poly(methyl methacrylate)-poly (vinyl chloride), PMMA-PVC gel polymer electrolytes were prepared by solution casting technique. These ionic liquid-based gel polymer electrolytes exhibit Arrhenius type temperature dependence of ionic conductivity. The highest ionic conductivity of (8.08 ± 0.01) × 10− 4 Scm−1 was achieved at 80 °C upon addition of 60 wt.% of BmImTFSI. X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies revealed the amorphous nature and morphology of these polymer electrolytes, respectively. The lower coherence length of the peak inferred the higher amorphous degree in these polymer matrices. Decreases in Tg and Tm indicate the flexibility of polymer backbone. The amorphous behavior of these ionic liquid-based gel polymer electrolytes are also enhanced as shown in differential scanning calorimetry (DSC) analysis. On the contrary, thermogravimetric analysis (TGA) divulges that the thermal stability of polymer electrolytes has been improved upon impregnation of BmImTFSI.  相似文献   

17.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

18.
19.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

20.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号