首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Gn denote the empirical distribution based on n independent uniform (0, 1) random variables. The asymptotic distribution of the supremum of weighted discrepancies between Gn(u) and u of the forms 6wv(u)Dn(u)6 and 6wv(Gn(u))Dn(u)6, where Dn(u) = Gn(u)?u, wv(u) = (u(1?u))?1+v and 0 ? v < 12 is obtained. Goodness-of-fit tests based on these statistics are shown to be asymptotically sensitive only in the extreme tails of a distribution, which is exactly where such statistics that use a weight function wv with 12 ? v ? 1 are insensitive. For this reason weighted discrepancies which use the weight function wv with 0 ? v < 12 are potentially applicable in the construction of confidence contours for the extreme tails of a distribution.  相似文献   

2.
Given a set P of at most 2n-4 prescribed edges (n?5) and vertices u and v whose mutual distance is odd, the n-dimensional hypercube Qn contains a hamiltonian path between u and v passing through all edges of P iff the subgraph induced by P consists of pairwise vertex-disjoint paths, none of them having u or v as internal vertices or both of them as endvertices. This resolves a problem of Caha and Koubek who showed that for any n?3 there exist vertices u,v and 2n-3 edges of Qn not contained in any hamiltonian path between u and v, but still satisfying the condition above. The proof of the main theorem is based on an inductive construction whose basis for n=5 was verified by a computer search. Classical results on hamiltonian edge-fault tolerance of hypercubes are obtained as a corollary.  相似文献   

3.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

4.
In this note, we give a new short proof of the following theorem: Let G be a 2-connected graph of order n. If for any two vertices u and v with d(u,v)=2,max{d(u),d(v)}?c/2, then the circumference of G is at least c, where 3?c?n and d(u,v) is the distance between u and v in G.  相似文献   

5.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

6.
A form (linear functional) u is called regular if there exists a sequence of polynomials {Pn}n⩾0, deg Pn=n which is orthogonal with respect to u. Such a form is said to be semi-classical, if there exist polynomials Φ and Ψ such that D(Φu) + Ψu = 0, where D designs the derivative operator.On certain regularity conditions, the product of a semi-classical form by a polynomial, gives a semi-classical form. In this paper, we consider the inverse problem: given a semi-classical form v, find all regular forms u which satisfy the relation x2u = −λv, λ ∈ C1. We give the structure relation (differential-recurrence relation) of the orthogonal polynomial sequence relatively to u. An example is treated with a nonsymmetric form v.  相似文献   

7.
Meyniel's theorem states that a strict diconnected digraph has a directed Hamilton cycle if d(u) + d(v) ? 2n ? 1 for every pair u, v of nonadjacent vertices. We give short proof of this theorem.  相似文献   

8.
Let id(v) denote the implicit degree of a vertex v in a graph G. We define G to be implicit 1-heavy (implicit 2-heavy) if at least one (two) of the end vertices of each induced claw has (have) implicit degree at least n/2. In this paper, we prove that: (a) Let G be a 2-connected graph of order n ≥ 3. If G is implicit 2-heavy and |N(u) ∩ N(v)| ≥ 2 for every pair of vertices u and v with d(u, v) = 2 and max{id(u), id(v)} < n/2, then G is hamiltonian. (b) Let G be a 3-connected graph of order n ≥ 3. If G is implicit 1-heavy and |N(u) ∩ N(v)| ≥ 2 for each pair of vertices u and v with d(u, v) = 2 and max{id(u), id(v)} < n/2, then G is hamiltonian.  相似文献   

9.
10.
《Discrete Mathematics》2004,274(1-3):125-135
The classical Ramsey number r(m,n) can be defined as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, β(B)⩾m or β(R)⩾n, where β(G) denotes the independence number of a graph G. We define the upper domination Ramsey number u(m,n) as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or Γ(R)⩾n, where Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. The mixed domination Ramsey number v(m,n) is defined to be the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or β(R)⩾n. Since β(G)⩽Γ(G) for every graph G, u(m,n)⩽v(m,n)⩽r(m,n). We develop techniques to obtain upper bounds for upper domination Ramsey numbers of the form u(3,n) and mixed domination Ramsey numbers of the form v(3,n). We show that u(3,3)=v(3,3)=6, u(3,4)=8, v(3,4)=9, u(3,5)=v(3,5)=12 and u(3,6)=v(3,6)=15.  相似文献   

11.
In 1989, Zhu, Li and Deng introduced the definition of implicit degree of a vertex v in a graph G, denoted by id(v). In this paper, we prove that if G is a 2-connected graph of order n such that id(u) + id(v) ≥ n for each pair of nonadjacent vertices u and v in G, then G is pancyclic unless G is bipartite, or else n = 4r, r ≥ 2 and G is isomorphic to F4r .  相似文献   

12.
For a given graph G its Szeged weighting is defined by w(e)=nu(e)nv(e), where e=uv is an edge of G,nu(e) is the number of vertices of G closer to u than to v, and nv(e) is defined analogously. The adjacency matrix of a graph weighted in this way is called its Szeged matrix. In this paper we determine the spectra of Szeged matrices and their Laplacians for several families of graphs. We also present sharp upper and lower bounds on the eigenvalues of Szeged matrices of graphs.  相似文献   

13.
《Discrete Mathematics》2002,231(1-3):319-324
A graph G is called n-factor-critical if the removal of every set of n vertices results in a~graph with a~1-factor. We prove the following theorem: Let G be a~graph and let x be a~locally n-connected vertex. Let {u,v} be a~pair of vertices in V(G)−{x} such that uvE(G), xNG(u)∩NG(v), and NG(x)⊂NG(u)∪NG(v)∪{u,v}. Then G is n-factor-critical if and only if G+uv is n-factor-critical.  相似文献   

14.
Let F be an oriented forest with n vertices and m arcs and D be a digraph without loops and multiple arcs. In this note we prove that D contains a subdigraph isomorphic to F if D has at least n vertices and min{d+(u)+d+(v),d(u)+d(v),d+(u)+d(v)}≥2m−1 for every pair of vertices u,vV(D) with uvA(D). This is a common generalization of two results of Babu and Diwan, one on the existence of forests in graphs under a degree sum condition and the other on the existence of oriented forests in digraphs under a minimum degree condition.  相似文献   

15.
LetA be a Banach algebra with unite. Ifu, v 1, …,v n are elements ofA thenu is said to be dominated byv 1, …,v n if there is γ>O such that for everyxA we have ‖ux‖≤γ(‖v 1 x‖+…+‖v n x‖). It is shown that for everyxA we have ‖ux‖≤γ(‖v 1 x‖+…+‖v n x‖). it is shown for finite-dimensional algebras that the above condition is sufficient foru to belong to the left ideal generated byv 1, …,v n in some superalgebra ofA. A similar result is proved for subalgebras of the algebra of all bounded operators on a Hilbert space.  相似文献   

16.
Let G be a graph. If u,vV(G), a u-vshortest path of G is a path linking u and v with minimum number of edges. The closed interval I[u,v] consists of all vertices lying in some u-v shortest path of G. For SV(G), the set I[S] is the union of all sets I[u,v] for u,vS. We say that S is a convex set if I[S]=S. The convex hull of S, denoted Ih[S], is the smallest convex set containing S. A set S is a hull set of G if Ih[S]=V(G). The cardinality of a minimum hull set of G is the hull number of G, denoted by hn(G). In this work we prove that deciding whether hn(G)≤k is NP-complete.We also present polynomial-time algorithms for computing hn(G) when G is a unit interval graph, a cograph or a split graph.  相似文献   

17.
Place tokens on distinct vertices of an arbitrary finite digraph with n vertices which may contain cycles or loops. Each of two players alternately selects a token and moves it from its present position u to a neighboring vertex v along a directed edge which may be a loop. If v is occupied, and uv, both tokens get annihilated and phase out of the game. The player first unable to move is the loser, the other the winner. If there is no last move, the outcome is declared a draw. An O(n6) algorithm for computing the previous-player-winning, next-player-winning and draw positions of the game is given. Furthermore, an algorithm is given for computing a best strategy in O(n6) steps and winning—starting from a next-player-winning position—in O(n5) moves.  相似文献   

18.
A graph is denoted by G with the vertex set V(G) and the edge set E(G). A path P = 〈v0v1, … , vm〉 is a sequence of adjacent vertices. Two paths with equal length P1 = 〈 u1u2, … , um〉 and P2 = 〈 v1v2, … , vm〉 from a to b are independent if u1 = v1 = a, um = vm = b, and ui ≠ vi for 2 ? i ? m − 1. Paths with equal length from a to b are mutually independent if they are pairwisely independent. Let u and v be two distinct vertices of a bipartite graph G, and let l be a positive integer length, dG(uv) ? l ? ∣V(G) − 1∣ with (l − dG(uv)) being even. We say that the pair of vertices u, v is (ml)-mutually independent bipanconnected if there exist m mutually independent paths with length l from u to v. In this paper, we explore yet another strong property of the hypercubes. We prove that every pair of vertices u and v in the n-dimensional hypercube, with dQn(u,v)?n-1, is (n − 1, l)-mutually independent bipanconnected for every with (l-dQn(u,v)) being even. As for dQn(u,v)?n-2, it is also (n − 1, l)-mutually independent bipanconnected if l?dQn(u,v)+2, and is only (ll)-mutually independent bipanconnected if l=dQn(u,v).  相似文献   

19.
Let 1=d1(n)<d2(n)<?<dτ(n)=n be the sequence of all positive divisors of the integer n in increasing order. We say that the divisors of n are y-dense iff max1?i<τ(n)di+1(n)/di(n)?y. Let D(x,y,z) be the number of positive integers not exceeding x whose divisors are y-dense and whose prime divisors are bigger than z, and let , and . We show that is equivalent, in a large region, to a function d(u,v) which satisfies a difference-differential equation. Using that equation we find that d(u,v)?(1−u/v)/(u+1) for v?3+ε. Finally, we show that d(u,v)=eγd(u)+O(1/v), where γ is Euler's constant and d(u)∼x−1D(x,y,1), for fixed u. This leads to a new estimate for d(u).  相似文献   

20.
Given a simple polygon P with two vertices u and v, the three-guard problem asks whether three guards can move from u to v such that the first and third guards are separately on two boundary chains of P from u to v and the second guard is always kept to be visible from two other guards inside P. It is a generalization of the well-known two-guard problem, in which two guards move on the boundary chains from u to v and are always kept to be mutually visible. In this paper, we introduce the concept of link-2-ray shots, which can be considered as ray shots under the notion of link-2-visibility. Then, we show a one-to-one correspondence between the structure of the restrictions placed on the motion of two guards and the one placed on the motion of three guards, and generalize the solution for the two-guard problem to that for the three-guard problem. We can decide whether there exists a solution for the three-guard problem in O(nlogn) time, and if so generate a walk in O(nlogn+m) time, where n denotes the number of vertices of P and the size of the optimal walk. This improves upon the previous time bounds O(n2) and O(n2logn), respectively. Moreover, our results can be used to solve other more sophisticated geometric problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号