首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self- and He-broadening coefficients of microwave transitions of CH3F have been measured with and without the presence of an external electric field. This provides values for the J, K → J + 1, K (K = 0 − J) transitions for J = 1 and J = 3 as well as for the various J, K, M → J + 1, K, M′ (|M| = 0 − K, |M - M′| = 0, 1) Stark components. The results and those of a previous experimental study for pure CH3F, which show significant line-mixing effects, are analyzed with a model based on the Infinite Order Sudden approximation. It is shown that the latter leads to very satisfactory modeling of observed values even though no parameter was adjusted since previously and independently determined basic cross-sections are used. The quality of the present predictions is comparable with that obtained previously with a semi-classical approach. Furthermore, it is shown that the previously stated inaccuracy of the IOS model was due to an oversimplified use of this approach.  相似文献   

2.
For the first time, the hyperfine structure of the rotational J = 1 ← 0 (K = 0) and J = 2 ← 1 (K = 0, 1) transitions of phosphine has been resolved by using microwave spectroscopy. To this purpose, the Lamb-dip technique has been employed. In addition, the J = 3 ← 2 (K = 0, 1, 2) transition has been recorded at Doppler resolution. The present investigation allowed us to provide accurate values for most of the hyperfine constants as well as ground state rotational parameters.  相似文献   

3.
Power series expansions of water eigenstate energies in J and K converge poorly and show alternating signs of the coefficients of the power series. Euler series can be used effectively to change an alternating series into one where all the coefficients have the same sign and where the radius of convergence is increased. This paper extends the Euler series to a two-dimensional series in K2 and [J (J + 1) − K2]. Application of this Euler series to the rotational energies of the ground state and the first 4 excited vibrational states of water allows a fit to experimental accuracy to J = 22 and K = 22. This fit has good convergence and also has predictive capability. It is much easier to fit the perturbed states because the Euler series allows the zero-order energy the perturbed states to be predicted with more confidence.  相似文献   

4.
The electric dipole moment of bromofluoromethane, CH279BrF, has been determined with a good accuracy by observing the second order ΔMJ = 0 Stark spectrum of the J = 32,1 ← 31,2, J = 52,3 ← 51,4 and J = 52,4 ← 51,5 rotational transitions. In addition, the equilibrium geometry and dipole moment have been evaluated using highly accurate ab initio calculations. By comparing the experimental [μa = 0.3466(11) D and μb = 1.704(26) D] and theoretical [μa = −0.339 D and μb = −1.701 D] dipole moment components, a very good agreement has been found.  相似文献   

5.
We report on linewidth measurements on the J=24K,11−23K,10 and J=38K,33−37K,32 millimeter wave transitions in the ground vibrational state of nitric acid, located near 470.23 and 544.36 GHz, respectively. Experiments were performed with N2 and O2 as perturber molecules, in the 240-350 K temperature range by using a video-type spectrometer. The foreign-gas broadening parameters and their temperature dependence coefficients were determined using the Voigt profile, no narrowing effect being observed. In order to check the reliability of reported values, we carried out measurements on the J=14K,12−13K,11 transition located near 206.6 GHz, previously observed in two other laboratories. For this last line all the reported values are consistent themselves within one claimed standard deviation.  相似文献   

6.
The high-resolution Fourier transform spectrum of the ν8 CO-stretching band of CH318OH between 900 and 1100 cm−1 has been recorded at the Canadian Light Source (CLS) synchrotron facility in Saskatoon, and the majority of the torsion-rotation structure has been analyzed. For the νt = 0 torsional ground state, subbands have been identified for K values from 0 to 11 for A and E torsional symmetries up to J values typically well over 30. For νt = 1, A and E subbands have been assigned up to K = 7, and several νt = 2 subbands have also been identified. Upper-state term values determined from the assigned transitions using the Ritz program have been fitted to J(J + 1) power-series expansions to obtain substate origins and sets of state-specific parameters giving a compact representation of the substate J-dependence. The νt = 0 subband origins have been fitted to effective molecular constants for the excited CO-stretching state and a torsional barrier of 377.49(32) cm−1 is found, representing a 0.89% increase over the ground-state value. The vibrational energy for the CO-stretch state was found to be 1007.49(7) cm−1. A number of subband-wide and J-localized perturbations have been seen in the spectrum, arising both from anharmonic and Coriolis interactions, and several of the interacting states have been identified.  相似文献   

7.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

8.
In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure-broadening coefficients of 368 ν2 transitions with quantum numbers as high as J″ = 20 and K = 16, where K″ = K′ ≡ K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about −0.0003 to −0.0094 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressure-shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D, are also in reasonable agreement with the scattered experimental data (20% in most cases).  相似文献   

9.
The ground state (ν = 0) rotational spectrum of 2-fluorobenzonitrile has been reinvestigated in the frequency range 40.0-99.0 GHz. The millimeter-wave spectrometer used is a source-modulated system combined with a free space glass cell. Millimeter-wave radiation has been produced using a Gunn diode and frequency doubler combination. High J and K−1 (J ? 49 and K−1 ? 18) transitions have been measured and accurate rotational and centrifugal distortion constants have been determined. Finally, the experimental values were compared with the corresponding values calculated at the HF/DFT-B3PW91/6-31g(d,p) level of theory. A very good agreement has been found.  相似文献   

10.
In this paper, we report measured Lorentz self-broadening and self-induced pressure-shift coefficients of 12CH3D in the ν2 fundamental band (ν0 ≈ 2200 cm−1). The multispectrum fitting technique allowed us to analyze simultaneously seven self-broadened absorption spectra. All spectra were recorded at the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak, AZ with an unapodized resolution of 0.0056 cm−1. Low-pressure (0.98-2.95 Torr) as well as high-pressure (17.5-303 Torr) spectra of 12C-enriched CH3D were recorded at room temperature to determine the pressure-broadening coefficients of 408 ν2 transitions with quantum numbers as high as J″ = 21 and K = 18, where K″ = K′ ≡ K (for a parallel band). The measured self-broadening coefficients range from 0.0349 to 0.0896 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported pressure-induced self-shift coefficients vary from about −0.004 to −0.008 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 3.6%. A semiclassical theory based upon the Robert-Bonamy formalism of interacting linear molecules has been used to calculate these self-broadening and self-induced pressure-shift coefficients. In addition to the electrostatic interactions involving the octopole and hexadecapole moments of CH3D, the intermolecular potential includes also an atom-atom Lennard-Jones model. For low K (K ? 3) with |m| ? 8 the theoretical results of the broadening coefficients are in overall good agreement (3.0%) with the experimental data. For transitions with K approaching |m|, they are generally significantly underestimated (8.8%). The theoretical self-induced pressure shifts, whose vibrational contribution is derived from results in the QQ-branch, are generally smaller in magnitude than the experimental data in the QP-, and QR-branches (15.2%).  相似文献   

11.
High-resolution Fourier transform infrared spectra of natural trans-ClHCCHF and of its isotopologue trans-ClHCCDF have been recorded in the region between 700 and 1150 cm−1 with the purpose to analyze the ν11 fundamental of the main species and the ν10 of its deuterated compound. Both bands, of symmetry species A″, present c-type envelope absorptions. Beside the expected features, the K structure of the P(J), Q(J), and R(J) manifolds was resolved and identified; the assignment of the rovibrational transitions was extended up to J = 92 and Ka = 13 for the trans-35ClHCCHF and up to J = 86 and Ka = 10 for trans-35ClHCCDF. More than 2900 and 2700 lines for the main and deuterated species, respectively, were analyzed by a least-squares procedure and reliable spectroscopic molecular parameters were determined for both isotopologues.  相似文献   

12.
We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 ν2 transitions with quantum numbers as high as J″ = 17 and K = 14, where K″ = K′ ≡ K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about −0.0017 to −0.0068 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| ? 12 values (11.3% for the first calculation and 8.1% for the second calculation). The O2-pressure shifts whose vibrational contribution are either derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D or those obtained from pressure shifts induced by Xe in the ν3 band of CH3D are in reasonable agreement with the scattered experimental data (17.0% for the first calculation and 18.7% for the second calculation).  相似文献   

13.
The FTIR spectrum of pentafluoroethane (R125) was measured in the mid infrared region from 900 to 4000 cm−1. Vibrational assignments for R125 are revised by comparison of previous and current experimental data with ab initio calculations at both the MP2/6-311+(d,p) and B3LYP/TZV+(3df,3p) levels of theory. High resolution FTIR spectra were recorded at room temperature and in an enclosive flow cell at a rotational temperature of 140 K. The cold spectrum was sufficiently resolved to enable rovibrational analyses of the overlapping ν4 (1200.7341 cm−1) and ν13 (1223.3 cm−1) bands, which have a/c hybrid and b-type character, respectively. Ground state combination differences were used to confirm assignment of 2375 lines to ν4 (Jmax = 86, Ka max = 50) and 2921 lines to ν13 (Jmax = 60, Ka max = 54). Effective rotational and centrifugal distortion constants were determined for ν4, and the polarization ratio was found to be . Severe Coriolis perturbations prevent any satisfactory fit to the ν13 band.  相似文献   

14.
The rotational spectrum of methylcyanide (acetonitrile) in the ground vibrational state was measured in the spectral region from 91 to 810 GHz using the Cologne and Tsukuba spectrometers operated in the Doppler-limited and sub-Doppler saturation layouts. The resolution of the saturation Lamb-dip measurements is estimated to be about 1 kHz at the best of circumstances and the measuring accuracy of 10-60 kHz depending very sensitively on the quality of the spectrum. In the cases of rotational transitions with the low quantum number J (J<18) and with a low difference of the rotational quantum numbers JK, the resolved or partly resolved hyperfine structures of the rotational transitions were observed. Together with the most accurate data from the literature, the newly measured experimental data were analyzed using the traditional polynomial energy formula as well as the Padè approximant for the effective rotational Hamiltonian. The resulting rotational, centrifugal distortion, and hyperfine structure spectroscopic constants were obtained with a significantly higher accuracy than the ones listed in the literature. In addition, an anomalous accidental resonance was detected between the K=14 ground state levels and the K=12, +l levels in the excited v8=1 vibrational state.  相似文献   

15.
Monte Carlo simulations show that, at one monolayer coverage, H2 molecules adsorbed on a NaCl(0 0 1) surface occupy all Na+ sites and form a commensurate c(2 × 2) structure. If the Cl sites are occupied as well, a bi-layer p(2 × 1) structure forms. An examination of the H2 molecules’ rotational motion shows the molecular axes are azimuthally delocalized and so both of the structures acquire (1 × 1) symmetry in accord with experimental observations. These calculations also show that helicoptering o-H2 (J = 1, m = ±1) prefer to sit on top of Na+ sites, while cartwheeling o-H2 (J = 1, m = 0) prefers to locate over Cl sites, in agreement with other work.  相似文献   

16.
A global fit within experimental accuracy of microwave rotational transitions in the ground and first excited torsional states (vt = 0 and 1) of methylformate (HCOOCH3) is reported, which combines older measurements from the literature with new measurements from Kharkov. In this study the so-called ‘‘rho axis method’’ that treats simultaneously both A and E species of the ground and first excited torsional states is used. The final fit requires 55 parameters to achieve an overall unitless weighted standard deviation of 0.71 for a total of 10533 transitions (corresponding to 9298 measured lines) with rotational quantum numbers up to J ? 62 and Ka ? 26 in the ground state and J ? 35 and Ka ? 23 in the first excited torsional state. These results represent a significant improvement over past fitting attempts, providing for the first time a fit within experimental accuracy of both ground and first excited torsional states.  相似文献   

17.
Extensive experiments on the K = 3 component of the J = 12-11 rotational transition of acetonitrile CH3C14N, located near 220.7 GHz, were performed at different temperatures in the range 235-350 K. They allow determining the N2-, H2-, and He-broadening coefficients, as well as their temperature dependences. More specific measurements on all the K-components of the involved transition perturbed by N2 at 303 K allow to point out a clear decreasing of the broadening coefficient with increasing K. Narrowing effects are clearly observed, and experimental lines were analysed both with Voigt and speed dependent Voigt profiles; but no exhaustive lineshape study was carried out. All the experimental parameters are compared with results derived from a semiclassical calculation of collisional interactions, including electrostatic, induction, and dispersion energy contributions.  相似文献   

18.
A line list for D2 16O isotopologue of water molecule was calculated in the region 0-16,000 cm−1 with energy levels up to J=30. Variational calculations are based on the semi-theoretical potential energy surface obtained by morphing ab initio potential using the experimental energy levels of D2 16O. For energy levels with J=0, 2, 5 and 10, the standard deviation of the fit is 0.023 cm−1. This line list should make an excellent starting point for spectroscopic modeling and analysis of D2O rovibrational spectra.  相似文献   

19.
The pure rotational spectra of the v11 = 1 and v14 = 1 vibrational states of the main isotopic species of methyldiacetylene have been recorded and assigned in the 80-400 GHz frequency range, spanning the quantum numbers 19 ? J ? 95 and 0 ? K ? 15. The present study allows us to provide accurate rotational, centrifugal distortion and vibration-rotation interaction constants. The experimental investigation has been strongly supported by quantum-chemical computations at the second-order Møller-Plesset theory (MP2) in conjunction with a triple-zeta quality basis set.  相似文献   

20.
We have studied the mutually perturbing 33ΠΩ=0(v = 32, J = 19) ∼ 31ΠΩ=1(v = 6, J = 19) levels of NaK that are coupled together by the spin-orbit interaction. We note that this coupling is nominally forbidden by the ΔΩ = 0 selection rule for spin-orbit perturbations. However 33Π levels labeled by different values of Ω are mixed by rotational coupling; i.e. the 33ΠΩ levels are best described by a coupling scheme intermediate between Hund’s cases (a) and (b). Thus the 31ΠΩ=1 level couples to the 33ΠΩ=0 level via the small admixture of 33ΠΩ=1 character in the latter. The 33ΠΩ=0(v = 32, J = 19) ∼ 31ΠΩ=1(v = 6, J = 19) f symmetry pair is of particular interest since it appears to be very close to a 50-50 mixture of triplet and singlet character, and the splitting between these levels provides a direct measure of the 33Π ∼ 31Π spin-orbit coupling constant. On the other hand, excitation spectra of the 33ΠΩ=0(v = 32, J = 19) ∼ 31ΠΩ=1(v = 6, J = 19) e symmetry pair through the mixed “window” levels 1(b)3ΠΩ=0(v = 17, J = 18, 20) ∼ 2(A)1Σ+(v = 18, J = 18, 20) display dramatic quantum interference effects associated with “singlet” and “triplet” excitation channels. Almost complete cancellation for populating one or the other of the two upper states is observed for excitation from the predominantly triplet members of the window level pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号