首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric acid which is an important NOx atmospheric reservoir molecule exhibits a strong absorption in the spectral region. Since this region, which corresponds to an atmospheric window, is one of the most commonly used for the retrieval of HNO3 in the atmosphere it is essential to have the best possible corresponding spectral parameters. Updates of these spectral line parameters were recently performed in the last versions of the atmospheric databases. They concern the line positions and intensities not only of the two interfering cold bands ν5 and 2ν9 but also of the ν5+ν9ν9 hot band. This hot band exhibits indeed a sharp and strong Q branch at which is clearly observable in atmospheric spectra and is used for the retrievals. However, in spite of these recent updates, it proved that the spectral parameters of the hot band are not accurate enough to reproduce accurately the observed atmospheric HNO3 absorption in ATMOS spectra. The present paper is dedicated to a more accurate analysis of this hot band using new laboratory high-resolution (0.002-) Fourier transform spectra. As a consequence, new and more precise line positions and line intensities (about 35% weaker than in HITRAN2K) were derived leading to a significant improvement in the simulation of atmospheric spectra.  相似文献   

2.
High-resolution Fourier transform infrared spectra of natural trans-ClHCCHF and of its isotopologue trans-ClHCCDF have been recorded in the region between 700 and 1150 cm−1 with the purpose to analyze the ν11 fundamental of the main species and the ν10 of its deuterated compound. Both bands, of symmetry species A″, present c-type envelope absorptions. Beside the expected features, the K structure of the P(J), Q(J), and R(J) manifolds was resolved and identified; the assignment of the rovibrational transitions was extended up to J = 92 and Ka = 13 for the trans-35ClHCCHF and up to J = 86 and Ka = 10 for trans-35ClHCCDF. More than 2900 and 2700 lines for the main and deuterated species, respectively, were analyzed by a least-squares procedure and reliable spectroscopic molecular parameters were determined for both isotopologues.  相似文献   

3.
4.
The ν3 fundamental band (CO stretch) of HDCO at 1724 cm?1 has been studied using both conventional infrared absorption and CO laser Stark spectroscopy. In addition to the excited-state (v3 = 1) rotational constants, improved constants for the ground state of HDCO have been obtained by combining previous microwave data with some infrared combination differences. The following constants were determined:
  相似文献   

5.
The ν9 fundamental band (C-C-C deformation) of propane (C3H8) at 369 cm−1 has been studied at high-resolution (0.0011 cm−1) with spectra recorded using the synchrotron radiation from the French light source facility at SOLEIL coupled to a Bruker IFS 125HR Fourier transform spectrometer. A 2.526 m base multipass cell with optical paths from 10.296 to 151.78 m was used. In addition, a spectrum was also recorded using a conventional globar source. Comparison of these experimental spectra shows clearly the gain obtained on the signal-to-noise ratios with the synchrotron radiation. The spectra have been thoroughly analyzed and transitions up to J=65 and Ka=33 have been assigned. The upper-state rotational levels were fitted using an A-type Watson Hamiltonian written in the Ir representation. An accurate band center ν0 (ν9)=369.228080(25) cm−1 as well as accurate rotational and centrifugal distortion constants have been obtained and used to simulate a synthetic spectrum. These parameters should be useful to simulate hot bands of propane involving the 91 vibrational level as their lower state.  相似文献   

6.
The 71 and 91 vibrational states of deuterated species of formic acid molecule DCOOH have been recorded by a FTIR spectrometer in the region 450- at a resolution of and a millimeter wave spectrometer. In the analysis microwave transitions from literature were used in addition to 14 835 assigned IR and 114 millimeter wave lines in the 71 and 91 vibrational states. The analysis resulted in band origins, rotational, centrifugal distortion, and eight interaction parameters of the Coriolis coupled 71 and 91 vibrational states. RMS deviation of the fit was for the IR data and the maximum values of J and Ka quantum numbers in the fit were 64, 28 and 64, 30 for 71 and 91 states, respectively.  相似文献   

7.
This paper reports the first assignment of rovibrational transitions of the 5ν4 and ν2+4ν4 band systems of 12CH4 in the 6287-6550 cm−1 region, which is usually referred to as part of the 1.58 μm methane transparency window. The analysis was based on two line lists previously obtained in Grenoble by cavity ring down spectroscopy at T=297 and 79 K completed by three long-path Fourier transform spectra recorded in Reims (at 290 K, L=1603 m, P=1-34 mbar). In order to determine the dipole transition moment parameters and quantify the intensity borrowing due to the resonance interactions, we had to include in the fit of the effective Hamiltonian model some lines of the stronger ν1+3ν4 and ν2+4ν4 bands. For this purpose, intensities of 179 additional lines were retrieved from FTS spectra above 6550 cm−1 though the analysis of these higher bands is not complete. About 1955 experimental line positions and 1462 line intensities were fitted with RMS standard deviations of 0.003 cm−1 and 13.1%, respectively. A line list of 8029 calculated and observed transitions which are considered as dominant was constructed for 12CH4 in the 6287-6550 cm−1 region. This is the first high-resolution analysis and modelling of 5-quanta band systems of 12CH4.  相似文献   

8.
We have measured and fitted over 600 well-resolved lines in the ν3 ring breathing band of oxirane. The spectrum is accurately reproduced by previously determined rotational and centrifugal distortion constants for the ground state, together with newly determined rotational, quartic and some sextic distortion constants for the upper state. The magnitudes of the distortion constants reveal some evidence of Coriolis interactions with nearby states. The band centre was determined as .  相似文献   

9.
Vibration-rotation transitions of diacetylene between the first excited states of the ν6 (CCH symmetric bending) and the ν8 (CCH antisymmetric bending) vibrations were observed with a Stark modulation microwave spectrometer. The rotational, centrifugal distortion and l-type doubling constants of the two vibrational states were determined as follows with 2.5 σ uncertainties in parentheses.
ConstantGround statev3 = 1 stateUnits
ν01724.267cm?1
A198 119.75198 210.4MHz
B34 910.64634 676.6MHz
C29 561.48829 331.3MHz
μa2.33022.3486D
μb0.1950.190D
  相似文献   

10.
The ν1 band of thiazyl chloride (NSCl) has been measured by high resolution FTIR spectroscopy, and studied using the spectral analysis by subtraction of simulated intensities (SASSI)-technique. This involves assignment and fitting of a component, creating a global simulation of the entire component to be subtracted from the experimental spectrum, and subsequent analysis of the resultant spectrum. Through this iterative procedure it has been possible to assign rovibrational transitions for seven components, with populations in the lower vibrational state as low as 2% of the total. The components are the fundamental and , , and hotbands of 14N32S35Cl, the fundamental and hotband of 14N32S37Cl, and the fundamental of 14N34S35Cl. Rotational and centrifugal distortion constants beyond the quartic level have been obtained by fitting to Watson’s A-reduced Hamiltonian in upper and lower states.  相似文献   

11.
The Fourier transform infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) was recorded at an unapodized resolution of 0.0063 cm−1 in the 1330-1475 cm−1 region. Upper state (ν12 = 1) rovibrational constants inclusive of three rotational, five quartic, and four sextic centrifugal distortion constants were improved by assigning and fitting 1444 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The present analysis yielded more higher-order upper state constants than previously reported. The rms deviation of the fit is 0.00055 cm−1. Improved ground state rovibrational constants were also determined from the combined fit of 2026 ground state combination differences (GSCD) from the assigned infrared transitions of the ν12, ν3 and ν6 bands and 21 microwave frequencies of C2H3D. The rms deviation of the GSCD fit is 0.00047 cm−1. The A-type ν12 band is centered at 1400.76262 ± 0.00004 cm−1. Local frequency perturbations were not detected in the analysis. The calculated inertial defect Δ12 is 0.20809 ± 0.00003 μÅ2.  相似文献   

12.
Previous studies of the parallel bands 2ν2 and 50 of CH3Br by the two first authors have been completed by the analysis of the weaker perpendicular band ν2 + ν5, centered near 2745 cm?1. It is well known that the v2 = 1 and v5 = 1 states of methylbromide are linked by an x-y-type Coriolis interaction. Therefore, in the 2500–2900-cm?1 range, the levels
(v2=2), (v52, l5=0), (v5=2, l5±2), (v5=v2=1, l=5±1)
are linked by a similar interaction. Least-squares and prediction programs have been written to treat this kind of problems and they have been satisfactorily applied to both isotopic species, CH379Br and CH381Br. A localized resonance in the K = 0 subband of ν2 + ν5 has been shown to be due to the 3ν3 + ν6 band. No evidence for a strong Fermi resonance between ν1 and 50 has been found.  相似文献   

13.
The high-resolution overtone spectrum of OCS has been recorded in the region of the ν1+4ν3 and 5ν3 bands by intracavity laser absorption spectroscopy based on an optically pumped vertical external cavity surface emitting laser (VECSEL). The extremely weak ν1+4ν3 band at was found to be isolated. The 5ν3 band at is accompanied by two weaker bands at 9933.53 and assigned to the 1204-0000 and 0404-0000 bands, respectively. In addition, the 0115-0110 hot band was detected together with the extremely weak band heads of the R branch of the 020,25-020,20 hot bands. Finally, the 5ν3 band of the 16O12C34S minor isotopomer, present in natural abundance in the sample, was also observed and rotationally analyzed. Effective state parameters could be retrieved by standard band-by-band rotational fitting of the line positions, leading to a typical rms of . The observed line positions were compared to the predictions of the global model described by Rhaibi et al. [J. Mol. Spectrosc. 191 (1998) 32-44]. In general, the agreement is excellent, close to the experimental uncertainty () thus confirming the high predictive ability of this effective Hamiltonian model. Weak but significant deviations up to were, however, identified for two rotational levels of the highly excited 2,160,0 dark state, observed through a local interaction with the 0005 state. In the case of the 16O12C34S isotopomer, the predicted line wavenumbers of the 5ν3 band were globally overestimated by about . The new data have been included in the corresponding global model, leading to almost unchanged values of the molecular parameters and a statistical agreement with the experiment.  相似文献   

14.
We report the first high resolution rovibrational analysis of the infrared spectrum of pyrimidine (C4H4N2) based on measurements using our Fourier transform spectrometer, the Bruker IFS 125 HR Zürich Prototype (ZP) 2001. Measurements were conducted at room temperature in a White-type cell with effective optical path lengths between 3.2 and 9.6 m and with resolutions ranging from 0.0008 to 0.0018 cm−1 in the region between 600 and 1000 cm−1. The spectrum was analyzed in the ν4 (), ν10b () and ν6b regions of pyrimidine () using an effective Hamiltonian. A total of about 15 000 rovibrational transitions were assigned. The root mean square deviations of the fitted data are in the ranges drms = 0.00018-0.00024 cm−1, indicating an excellent agreement of experimental line data with the calculations. The results are discussed briefly in relation to possible extensions to spectra of DNA bases and to intramolecular vibrational redistribution at higher energy. The analysis of the ν10b and ν4 bands will also be useful in the interstellar search for pyrimidine in the infrared region.  相似文献   

15.
Infrared spectra of the small strained cage molecule [1.1.1]propellane have been obtained at high resolution (0.0015 cm−1) and the J, K, and l rovibrational structure has been resolved for the first time. We recently used these spectra to obtain combination-differences to deduce ground state parameters for propellane; over 4100 differences from five fundamental and four combination bands were used in the fitting process. The combination-difference approach eliminated potential errors caused by localized perturbations in the upper states and gave well-determined ground state parameters. In the current work, these ground state constants were fixed when fitting the upper state parameters for the ν12 (e′) perpendicular and parallel bands. Over 4000 infrared transitions were fitted for each band, with J, K values ranging up to 71, 51 and 92, 90, respectively. While the transition wavenumbers for both bands can be fit nicely using separate analyses for each band, the strong intensity perturbations observed in the weaker ν12 band indicated that Coriolis coupling between the two modes was significant and should be included. Due to correlations with other parameters, the Coriolis coupling parameter for the ν15 and ν12 interaction is poorly determined by a transition wavenumber fit alone but, fortunately, the intensity perturbations gave useful added constraints on . By combining the wavenumber fit with a fit of experimental intensities, a value of −0.42 was obtained, quite close to the value of −0.44 predicted by Gaussian ab initio density functional calculations using a cc-pVTZ basis. This intensity fit also yielded a (∂μz/∂Q15)/(∂μx/∂Q12a) dipole derivative ratio of 36.5, in reasonable agreement with a value of 29.2 predicted by the ab initio calculations. This ratio is unusually high due to large charge movement as the novel central Caxial-Caxial bond is displaced along the symmetry axis of the molecule for the ν15 mode.  相似文献   

16.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

17.
The P-H stretching bands ν1/ν5 and 2ν1/ν1+ν5 were recorded using a Bruker 120 HR interferometer with a resolution of 0.0042 and 0.0088 cm−1, respectively, and analyzed. From the fits 33 and 50, respectively, vibrational, rotational, centrifugal distortion, and resonance interaction parameters were obtained. These reproduce 668 and 497 rovibrational energies of the pairs of states ν1/ν5 and 2ν1/ν1+ν5 with experimental accuracies, rms=0.00016 and , respectively. “Local mode” behavior of the PH2 fragment is established and discussed in detail.  相似文献   

18.
The second overtone band 3ν1 of sulfur dioxide has been studied for the first time with high resolution rotation-vibration spectroscopy. About 3000 transitions involving about 900 upper state energy levels with have been assigned to the 3ν1 band. In the analysis, an effective Hamiltonian taking into account accidental interactions between the vibrational states (3 0 0), (2 2 0), and (0 4 1) was used. The Watson operator in A-reduction and Ir representation was used in the diagonal blocks of the Hamiltonian. As the result of analysis a set of parameters reproducing the initial experimental data with the rms = 0.00028 cm−1 was obtained.  相似文献   

19.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

20.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

Bv (MHz)Dv (kHz)qv (MHz)
ν64391.3230(84)0.582(154)2.4830(32)
ν84391.1921(94)0.594(179)2.4073(37)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号