首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microwave spectra have been observed for N2-SO3, OC-SO3, Ar-SO3-CO, and several of their isotopic derivatives. All three complexes are symmetric tops with little or no out-of-plane distortion of the SO3. In Ar-SO3-CO, the Ar and CO lie on opposite sides of the sulfur, an arrangement which has not been previously observed for trimers involving SO3. In N2-SO3 and OC-SO3, the N-S and C-S bond lengths are 2.934(12) and 2.854(12), respectively. In Ar-SO3-CO, the C-S distance is 2.849(4) Å, which is identical, within the estimated uncertainties, to that in OC-SO3. The Ar-S distance, on the other hand, is 3.411(11) Å, which represents a small but distinct lengthening of 0.061(12) Å relative to that previously determined for Ar-SO3. Stark effect measurements for OC-SO3 and Ar-SO3-CO give dipole moments of 0.8488(13) and 0.602(15) D, respectively. The latter is very nearly equal to the difference between the dipole moments of OC-SO3 and Ar-SO3, suggesting that the dipole moment of the trimer is simply the vector sum of the unperturbed dimer dipole moments. Counterpoise corrected optimized geometries and binding energies have been computed at the MP2/aug-cc-pVTZ level for Ar-SO3 (1.08 kcal/mol), N2-SO3 (2.60 kcal/mol), OC-SO3 (3.92 kcal/mol), and Ar-SO3-CO (4.90 kcal/mol). The binding energy of Ar-SO3-CO is nearly equal to the sum of the Ar-SO3 and OC-SO3 binding energies, indicating that the two-body interactions on opposite sides of the SO3 plane are not strongly coupled. Taken together, the experimental and theoretical results indicate that Ar-SO3-CO is best regarded as a composite of Ar-SO3 and OC-SO3 moieties.  相似文献   

2.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

3.
Natural rubber (NR) grafted with 30 wt% poly (methyl methacrylate) (PMMA) and designated as MG30 has been added with varying amounts of LiCF3SO3. X-ray diffraction (XRD) shows the samples to be amorphous. Fourier transform infrared (FTIR) spectroscopy indicates complexation between the cation of the salt and the oxygen atom of the CO and –COO- groups of MG30. From electrochemical impedance spectroscopy (EIS), MG30 with 30 wt% LiCF3SO3 salt exhibits the highest ambient conductivity of 1.69×10−6 S cm−1 and lowest activation energy of 0.24 eV. The dielectric behavior has been analyzed using dielectric permittivity (ε′), dissipation factor (tan δ) and dielectric modulus (M?) of the samples. The dielectric constant of pure MG30 has been estimated to be ∼1.86.  相似文献   

4.
Chemical preparation, calorimetric studies, crystal structure and spectroscopic investigations are given for a new noncentrosymmetric organic cation monophosphate [2,5-(CH3)2C6H3NH3]H2PO4. This compound is orthorhombic P212121 with the following unit-cell parameters: a=5.872(4), b=20.984(3), c=8.465(1) Å, Z=4, V=1043.0(5) Å3 and Dx=1.396 g cm−3. Crystal structure has been solved and refined to R=0.048 using 2526 independent reflections. Structure can be described as an inorganic layer parallel to (a,b) planes between which organic groups [2,5-(CH3)2C6H3NH3]+ are located. Multiple hydrogen bonds connecting the different entities of compound thrust upon three-dimensional network a noncentrosymmetric configuration.  相似文献   

5.
The rotational spectrum of HCCCN-SO3 has been observed using Fourier transform microwave spectroscopy. The vibrationally averaged structure is that of a symmetric top, with the HCCCN axis along the C3 axis of the SO3, and the nitrogen end near the sulfur. The N-S bond length is 2.567(13) Å, which is slightly shorter than the sum of the van der Waals radii. The NSO angle is 91.7(4)°, indicating a small but distinct distortion of the SO3 from planarity, and the N-S interaction can be described as a chemical bond in an early stage of its formation. The N-S bond lengths in a series of SO3 adducts with amines, nitriles, and pyridine are shown to correlate well with the proton affinities of the bases. In addition, for the bases considered here, the proton affinities vary in a regular manner with the ionization energies corresponding to removal of a lone pair electron. Thus, the trend in proton affinities follows the variation in energy gap between donor and acceptor orbitals in these complexes, accounting for the utility of the proton affinity in correlating aspects of structure and bonding across the series.  相似文献   

6.
The promotion of sulfur oxides on the selective catalytic reduction (SCR) of NO by hydrocarbons in the presence of a low concentration of sulfur oxides over Ag/Al2O3 has been investigated by a flow reaction test and in situ infrared spectroscopy. When the C3H6 (or C10H22) + NO + O2 feed-flow reaction was tested, maximum NO reduction was below 30% over fresh Ag/Al2O3. After the addition of SO2 to the feed flow, conversion increased slightly. Conversion increased further after SO2 was cut-off from the feed flow. This demonstrated that the increase in NO reduction activity of the catalyst was related to SOx adsorbed on the catalyst. SOx adsorbed on the catalytic surface (1375 cm−1) was detected by IR spectroscopy and was stable within the temperature range. NCO species, as an intermediate in NO reduction, on SOx-adsorbed Ag/Al2O3 in a C3H6 + NO + O2 feed flow was observed in in situ IR spectra during the elevation of the reaction temperature from 473 to 673 K, while it was only observed at 673 K on fresh Ag/Al2O3 under the same experimental conditions. We suggest that SOx in low concentrations depressed the combustion of reductants by contaminating hydrocarbon combustion active sites on the catalyst, resulting in an increase in NO reduction efficiency of the reductants.  相似文献   

7.
A variety of photoelectron spectra for gas phase F3SiC2H4Si(CH3)3 molecule have been measured using monochromatized undulator radiation and a hemispherical electrostatic analyzer. Valence photoelectron spectrum shows many peaks for ionization from shallow and deep molecular orbitals in the binding energy region of 9–40 eV. A calculation of ionization energies using the outer valence Green's function method indicates energies in agreement with experimental results below 17.5 eV. Spectra for Si L-shell electron emission show chemical shifts of Si atoms induced from different chemical environments around two Si atoms and also exhibit spin–orbit splitting for 2p photoelectrons. Further photoelectron spectra for C K-shell and F K-shell are discussed in comparison with those of related molecules.  相似文献   

8.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

9.
Both dimethylformamide (DMF) and diethylformamide (DEF) are important solvents for the synthesis of Zn4O(C8H4O4)3 framework (MOF-5). It is generally recognized that DMF molecules can be completely displaced by CH2Cl2 during the synthesis of MOF-5. Herein, however, it was found that the DMF molecules inside the pores of the MOF-5 framework cannot be displaced by CH2Cl2. The desorption of the DMF molecules from the pores, which requires a temperature of 100 °C or above, is the first order with activation energy of 56.38 kJ/mol. In contrast, DEF molecules can be completely displaced by CH2Cl2 during the synthesis of MOF-5, because DEF molecules cannot penetrate into the pores of the MOF-5 paste.  相似文献   

10.
This sixth of a series of publications on the high-resolution rotation-vibration spectra of sulfur trioxide reports the results of a systematic study of the ν3 and 2ν3 infrared bands of the four symmetric top isotopomers 32S16O3, 32S18O3, 34S16O3, and 34S18O3. An internal coupling between the l=0(A1) and l=2(E) levels of the 2ν3 states was observed. This small perturbation results in a level crossing between |kl|=9 and 12, in consequence of which the band origins of the A1,l=0 “ghost” states could be determined to a high degree of accuracy. Ground and upper state rotational constants as well as vibrational anharmonicity constants are reported. The constants for the center-of-mass substituted species 32S16O3 and 34S16O3 vary only slightly, as do the constants for the 32S18O3, 34S18O3 pair. The S-O bond lengths for the vibrational ground states of the species 32S16O3, 34S16O3, 32S18O3, and 34S18O3 are, respectively, 141.981 99(1), 141.979 38(6), 141.972 78(8), and 141.969 93(8) pm, where the uncertainties, given in parentheses, are two standard deviations and refer to the last digits of the associated quantity.  相似文献   

11.
The work presents a detailed analysis of the sequencing of the structural phase transitions in NH3(CH2)3NH3CdCl4 crystal by differential scanning calorimetry (DSC), X-ray, infrared, far infrared and Raman spectroscopy. DSC studies have shown that in analyzed crystal occurring one reversible continuous phase transition at 375/374 K (on heating/cooling). Observed in Nujol and Fluorolube mulls in the wide temperature range between 296 K and 413 K spectral changes through the structural phase transition can be attributed to an onset of motion of cations. An assignment of some bands due to internal modes has been also proposed.  相似文献   

12.
The structural, electronic and thermodynamic properties of cubic Zn3N2 under hydrostatic pressure up to 80 GPa are investigated using the local density approximation method with pseudopotentials of the ab initio norm-conserving full separable Troullier-Martin scheme in the frame of density functional theory. The structural parameters obtained at ambient pressure are in agreement with experimental data and other theoretical results. The change of bond lengths of two different types of Zn-N bond with pressure suggests that the tetrahedral Zn-N bond is slightly less compressible than the octahedral bond. By fitting the calculated band gap, the first and second order pressure coefficients for the direct band gap ofthe Zn3N2 were determined to be 1.18×10−2 eV/GPa and −2.4×10−4 eV/(GPa)2, respectively. Based on the Mulliken population analysis, Zn3N2 was found to have a higher covalent character with increasing pressure. As temperature increases, heat capacity, enthalpy, product of temperature and entropy increase, whereas the Debye temperature and free energy decrease. The present study leads to a better understanding of how Zn3N2 materials respond to compression.  相似文献   

13.
Geometry optimization calculations on 13 members of the C3H6O3 family of organic species have been carried out to determine their relative binding energies. Dimethyl carbonate [(CH3)2CO3] is one of the lower energy species in this family, which includes the C3-sugars 1,3-dihydroxyacetone and glyceraldehyde. The microwave spectrum of dimethyl carbonate has been measured over the frequency range 8.4-25.3 GHz with several pulsed-beam Fourier-transform microwave spectrometers and from 227 GHz to 350 GHz with direct absorption spectrometers. The spectrum of the lowest-energy cis-cis conformer of dimethyl carbonate has been assigned, and ab initio electronic structure calculations of the three possible conformers have been performed. Stark effect measurements were carried out on the cis-cis conformer to provide accurate determinations of the dipole moment components.  相似文献   

14.
Novel Eu3+, Ce3+ activated NaBa4(BO3)3 phosphors were synthesized by solid-state reactions. The excitation spectrum of NaBa4(BO3)3:Ce3+ consists of an intense band peaking at 350 nm and a weak band in the higher energy side, and the emission spectrum exhibits a blue band with a maximum at about 420 nm. The Eu3+ emission in NaBa4(BO3)3 consists of the transitions from 5D0 to 7FJ, and the excitation spectrum consists of broad excitation band peaking at 270 nm and some intense narrow lines. The optimum doped concentration, the critical distance of the concentration quenching, and the fluorescence lifetime have also been investigated.  相似文献   

15.
Classic molecular dynamics (MD) calculations were performed to investigate the deposition of thin hydrocarbon film. SiC (1 0 0) surfaces were bombarded with energetic CH3 molecules at impact energies ranging from 50 to 150 eV. The simulated results show that the deposition yield of H atoms decreases with increasing incident energy, which is in good agreement with experiments. During the initial stages, with breaking Si-C bonds in SiC by CH3 impacting, H atoms preferentially reacts with resulting Si to form Si-H bond. The C/H ratio in the grown films increases with increasing incident energy. In the grown films, CH species are dominant. For 50 eV, H-Csp3 bond is dominant. With increasing energy to 200 eV, the atomic density of H-Csp2 bond increases.  相似文献   

16.
The ground state of the solid solution of the two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H NMR. The existence of a magnetic ordering in the sample with the Cl-content x=0.85 was clearly demonstrated by a drastic splitting in a resonance line at low temperatures below TN=13.5 K. The observed NMR spectra in the ordered state was qualitatively consistent with the simple antiferromagnetic state.  相似文献   

17.
Gamma irradiated [(CH3)4N]InCl4 and [(CH3)4N]2CdCl4 single crystals were investigated by electron paramagnetic resonance at ambient temperature, and it has been found that both compounds indicate the existence of (CH3)3N+ radicals. The g factors were found to be isotropic, and the hyperfine constant for H atoms was measured as 2.86 mT and is isotropic for this radical in these substances. The hyperfine coupling constant of the N nucleus with the hole in (CH3)3N+ in [(CH3)4N]InCl4 was found to be anisotropic with the Azz=2.92, Ayy=1.62 and Axx=1.40 mT. From these, it has been revealed that the C3v-axis of (CH3)3N+ radical performs rotational or jumping reorientational motions around a fixed axis, in addition to the rotations of protons in CH3 groups and the rotational motions of CH3 groups around the C3v-axis of the radical. The g, and the hyperfine coupling factors of the N nucleus were isotropic in (CH3)3N+ in [(CH3)4N]2CdCl4. This indicates the motional behaviour of the radical in this compound is as in a liquid. This isotropic behaviour of the hyperfine coupling constants was found to be same until the attainable lowest temperature of 113 K in our laboratory.  相似文献   

18.
The electronic structure of the Tm3+ in YAl3(BO3)4 crystals has been investigated by means of low temperature absorption and emission spectroscopy in the 5000-30,000 cm−1 range. The assignment of the lines composing the observed manifolds to transitions between the Stark levels of Tm3+ is complicated by the presence of extra features having different origins. The energy levels scheme of the doping ion has been compiled after a careful analysis of the spectra by reproducing the observed transitions by means of theoretical calculations based on a Hamiltonian, including the free ion and the crystal field (CF) terms. The agreement between experimental and calculated energy values was reasonably good, the overall r.m.s. deviation being 16 cm−1. The resulting CF parameters have been tabulated and compared with those reported in literature for other rare earth ions doped in YAB. The analysis of trends observed along the lanthanide series evidences some inconsistencies and the necessity of a systematic investigation of these systems.  相似文献   

19.
The synthesis, structural and magnetic properties of a new type high permittivity material Ca(Ti1/2Mn1/2)O3 was reported. The sample was prepared by conventional solid-state reaction route. Rietveld analysis revealed it was single perovskite with space group Pnma. Normalized bond length and bond valence were calculated to investigate the compression/dilation effects of bonds and atoms in unit cell. There were five types of Ca-O bonds and three kinds of (Ti, Mn)-O bonds in Ca(Ti1/2Mn1/2)O3. The susceptibility curve at high temperature followed the Curie-Weiss law with Curie and Weiss constant as 0.8991 emu K/mol and −276.3 K, respectively. The calculated effective moment per Mn is 2.68 μB-Bohr magneton. Antiferromagnetism and spin glass state at low temperature were found in Ca(Ti1/2Mn1/2)O3. Frustration parameter was estimated to be about 30, suggesting the cluster-spin-glass resulted from geometrical frustration.  相似文献   

20.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号