首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The local structure of Ge and Ga ions in (1 − x)(Ge0.25Ga0.10S0.65)-xCsBr glasses (x = 0.00, 0.05, 0.10 and 0.12) were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy. CsBr formed [GaS3/2Br] structural units in glass while Ge ions remained in GeS4/2 tetrahedra, unaffected by CsBr addition. Rare-earth ions can be surrounded by Br ions only when CsBr/Ga ratio in glass became larger than unity.  相似文献   

2.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

3.
The environment of Nd3+ ions has been studied using optical absorption spectroscopy and EXAFS at the Nd L3-edge, in a series of soda lime aluminoborosilicate glasses with increasing B2O3 content. The proportion of BO4 units has been determined by 11B MAS NMR in an equivalent glass series with La3+ ions replacing the majority of Nd3+ ions, and complementary information has been obtained by measuring the Nd3+ decay fluorescence times in these latter glasses. In these glasses with low Al2O3 content, the R′ ratio, with R′ = [Na2Oexc] / [B2O3] and [Na2Oexc] = [Na2O] − [Al2O3] − [ZrO2], plays a key role in controlling the structural organization and crystallization resistance, in a similar way as the R ratio in the Dell and Bray model of sodium borosilicate glasses. At R′ > 0.5, the Nd3+ ions are located in a mixed silicate-borate environment and, by slow cooling of the melt, they tend to crystallize within a silicate apatite phase close to the Ca2Nd8(SiO4)6O2 composition. At R′ < 0.5, the structural results are compatible with Nd3+ ions located in a borate-type environment (not excluding Si neighbors), and, by slow cooling of the melt, they segregate with Ca2+ ions within a Si-depleted separated borosilicate phase.  相似文献   

4.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

5.
Iron redox equilibrium, structure and properties were investigated for the 10ZnO-30Fe2O3-60P2O5 (mol%) glasses melted at different temperatures. The structure and valence states of the iron ions in these glasses were investigated using Mössbauer spectroscopy, Raman spectroscopy and differential thermal analysis. Mössbauer spectroscopy indicated that the concentration of Fe2+ ions increased in the 10ZnO-30Fe2O3-60P2O5 (mol%) glass with increasing melting temperature. The Fe2+/(Fe2+ + Fe3+) ratio increased from 0.18 to 0.38 as the melting temperature increased from 1100 to 1300 °C. The measured isomer shifts showed that both Fe2+ and Fe3+ ions are in octahedral coordination. It was shown that the dc conductivity strongly depended on Fe2+/(Fe2+ + Fe3+) ratio in glasses. The dc conductivity increases with the increasing Fe2+ ion content in these glasses. The conductivity arises from the polaron hopping between Fe2+ and Fe3+ ions which suggests that the conduction is electronic in nature in zinc iron phosphate glasses.  相似文献   

6.
S. Rada  E. Culea 《Journal of Non》2011,357(7):1724-1728
Glasses in the quaternary system 0.05Al2O3·0.95[xGd2O3·(100-x)(7GeO2·3PbO)] with 0 ≤ x ≤ 40 mol% have been prepared from melt quenching method. In this paper, we investigated structural and optical properties in gadolinium-alumino-lead-germanate glasses through investigations of FTIR (Fourier-Transform Infrared Spectroscopy) and UV-VIS (Ultra-Violet) spectroscopy.The observations presented in these mechanisms show that by increasing Gd2O3 content up to 40 mol%, the glass network modification has taken place mainly in the germanate part, while the excess of oxygen can be accommodated in the host network by the creation of shorter rings of [Ge2O7] structural units and the formation of [AlO4] structural units. The affinity pronounced of the gadolinium cations towards germanate structural units produces the formation of the Gd2Ge2O7 crystalline phase.The UV-VIS spectroscopy data show the charge transfer transitions of Pb+ 2-O− 2, Al+ 3-O− 2 and Gd+ 3-O− 2, respectively. The additional absorption in the range of 300 to 600 nm was attributed to other types of defects such as: non-bridging oxygen ions, change in valency of ions and other color centers.The values of the direct optical band gap of the glasses are determined from the optical absorption spectra. By increasing Gd2O3 content in the glass matrix, the optical band gap energy increases indicating changes of the lattice parameters by Gd2O3 incorporation.  相似文献   

7.
In this work, new glass compositions in the TeO2-GeO2-Nb2O5-K2O system have been prepared and studied. The germanotellurite glasses were prepared by melt-quenching and their density, refractive index and characteristic temperatures have been determined. The structure of these glasses has been studied by infrared and Raman spectroscopies.The progressive replacement of TeO2 by GeO2 led to an increase of the glass transition and crystallisation temperatures of the glasses and a simultaneous decrease of their density and refractive index. Typical density and refractive index values of these glasses ranged from 4.98 to 3.85 g cm− 3 and 2.08 to 1.79, respectively, with increasing GeO2 content. The infrared spectra are dominated by a band ~ 640 cm− 1 in the tellurite glass and ~ 800 cm− 1 in the germanate glass. The Raman spectra of the germanotellurite glasses present an intense boson peak between ~ 34 and 47 cm− 1, together with high frequency peaks at ~ 670 cm− 1 and ~ 470 cm− 1 for high tellurite and high germanate glass compositions, respectively. The vibrational spectra of these germanotellurite glasses indicate that the glass network consists basically of TeO4 and [TeO3]/[TeO3 + 1] units, mixed with GeO4 and NbO6 polyhedra.  相似文献   

8.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

9.
Effects of boron addition on the glass forming characteristics, structure and properties of iron phosphate glasses with nominal compositions of xB2O3-(40−x)Fe2O3-60P2O5 (x = 2-20, mol%) and xB2O3-(100−x)[Fe2O3-60P2O5] (x = 2-20, mol%) have been investigated by DTA, XRD, IR and Mössbauer spectroscopy. Although there were some weak local surface crystallizations on especially most of the glasses in group B, all of the compositions formed glass. DTA spectra showed two exothermic peaks corresponding to crystallizations along with an endothermic glass transition peak. Tg increased with increasing B2O3 content for the glasses in the first series which indicates that the addition of B2O3 increases the thermal stability of glasses in this series while the opposite is observed in the second series. The dissolution rates of boron containing bulk glasses were found to be around 10−9 gr/cm2 min which are comparable to that of the base iron phosphate glass. When the B2O3 content was above 14%, new bands related to BO4 tetrahedral groups have been observed in the IR spectra. The Mössbauer isomer shift values of boron doped glasses were found to be a little lower than that of base glass but both iron ions had distorted octahedral coordination in all glasses. The fraction of Fe2+ ions in glasses (Fe2+/∑(Fe2+ + Fe3+)) was found to be 23% for the base glass while it was 10-22% for the boron doped glasses.  相似文献   

10.
In this paper, optical properties of 75TeO2-20ZnO-5Na2O host glass doped with concentration of Tm3+ up to 10 %mol were studied in order to assess the most suitable rare earth content for short cavity fiber lasers. Raman spectroscopy revealed a change in the glass structure while increasing Tm3+ content, similar to the well known addition of alkali ions in a glass. Influence of the fabrication process on the OH content was determined by FTIR measurements. Refractive index of Tm3+ doped tellurite glasses was measured at five different wavelengths ranging from 533 nm to 1533 nm. Lifetime and emission spectra measurements of the Tm3+ doped tellurite glasses are reported.  相似文献   

11.
Bing Zhang  Li Song  Fengzhen Hou 《Journal of Non》2008,354(18):1948-1954
Glasses in the ternary system ZnO-Sb2O3-P2O5 were investigated as potential alternatives to lead based glasses for low temperature applications. The glass-forming region of ZnO-Sb2O3-P2O5 system has been determined. Structure and properties of the glasses with the composition (60 − x)ZnO-xSb2O3-40P2O5 were characterized by infrared spectra (IR), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results of IR indicated the role of Sb3+ as participant in glass network structure, which was supported by the monotonic and remarkable increase of density (ρ) and molar volume (VM) with increasing Sb2O3 content. Glass transition temperature (Tg) and thermal stability decreased, and coefficient of thermal expansion (α) increased with the substitution of Sb2O3 for ZnO in the range of 0-50 mol%. XRD pattern of the heat treated glass containing 30 mol% Sb2O3 indicated that the structure of antimony-phosphate becomes dominant. The improved water durability of these glasses is consistent with the replacement of easily hydrated phosphate chains by corrosion resistant P-O-Sb bonds. The glasses containing ?30 mol% Sb2O3 possess lower Tg (<400 °C) and better water durability, which could be alternatives to lead based glasses for practical applications with further composition improvement.  相似文献   

12.
The influences of different alkali and alkali-earth oxide substitutions on the properties of lithium-iron-phosphate (LIP) glasses have been studied. Na2O, K2O, MgO, CaO and BaO were used to substitute Li2O to prepare LIP glasses with molar compositions of (20 − x)Li2O − xR2O(RO) − 30Fe2O3 − 50P2O5 (x = 2.4, 4, 5.6 and 7.2). The glass transition temperature (Tg) was determined by the differential thermal analysis technique. The density and chemical durability of the prepared glasses were measured based on the Archimedes principle and the weight losses after the glasses were boiled in water. The results show that Tg decreases with the initial substitutions, whereas the density and chemical durability increase. The diminution of the aggregation effect of Li+ ions on the glass structure due to the decrease in Li+ concentration, the larger molecule weights of the substitutes, the mixed-alkali and depressing effects as well the slower mobility of substitute ions mainly contribute to the initial changes in Tg, density and chemical durability of the LIP glasses, respectively. Further increasing the amounts of substitutes brings about increasing diminution of the aggregation effect of Li+ ions and breakage of the glass network on the one hand and increasing amounts of substitutes with larger molecule weights and ion radii on the other hand. Both aspects influence the glass properties oppositely and consequently non-monotonic variations in the properties of LIP glasses with the substitutions are observed.  相似文献   

13.
Q. Qian  G.F. Yang  Z.M. Yang  Z.H. Jiang 《Journal of Non》2008,354(18):1981-1985
Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses have been investigated for developing 1.5-μm broadband fiber amplifiers. An intense 1.5-μm near infrared emission with a broad full width at half maximum (FWHM) of 88 nm has been obtained for Er3+-doped 5Na2O-20Sb2O3-35B2O3-40SiO2 glass upon excitation with a 980 nm laser diode. The obtained emission cross-section of the 4I13/2 → 4I15/2 transition and the lifetime of the 4I13/2 level of Er3+ ions are 6.8 × 10−21 cm2 and 0.36 ms, respectively. It is noted that the product of the emission cross-section and the FWHM of the glass, σe × FWHM, is as great as 598.4 × 10−21 cm2 nm, which is comparable or higher than that of Er3+-doped bismuth-based and tellurite-based glasses. These special optical properties encourage in identifying them as important materials for potential applications in high performance optics and optical communication networks.  相似文献   

14.
Saswati Ghosh 《Journal of Non》2008,354(34):4081-4088
Several compositions based on BaO-CaO-Al2O3-SiO2 (BCAS) glass system have been studied in this investigation to see their applicability as sealant for solid oxide fuel cell (SOFC). The glasses as well as the corresponding glass-ceramics have been systematically characterized by differential thermal analysis, dilatometry, X-ray diffractometry, electron microscopy and impedance analysis to examine their suitability as sealant. While the glass transition temperature (Tg) determined from DTA are within 600-665 °C, the coefficient of thermal expansion (CTE) can be tailored between 9.5 and 13.0 × 10−6 K−1. These glasses are found to be well adhered with metallic interconnects, such as commercial ferritic steel (Crofer22APU), at an optimum sealing temperature of 850 °C. The shrinkage behavior of the developed glasses in their pellet form has also been investigated. The resistivities of the glass-ceramics, as obtained from impedance analysis, are found to be within 104-106 Ω cm at 800 °C. Under sandwiched condition between two metals, some of the developed compositions are found to maintain this high resistivity even after 100 h of operation. One of the glass compositions has shown a low leak-rate of the order of ∼10−7 Pa m2 s−1.  相似文献   

15.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

16.
A high-energy X-ray diffraction study has been carried out on a series of 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses with x = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8. Structure factors were measured to wave vectors as high as 30 Å−1 resulting in atomic pair distribution functions with high real space resolution. The three dimensional atomic-scale structure of the glasses was modeled by reverse Monte Carlo simulations based on the diffraction data. Results from the simulations show that at the atomic-scale 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses may be viewed as an assembly of independent chains of (Li+-S)2GeS2/2 and (Li+-O)2GeO2/2 tetrahedra as repeat units, where the Li ions occupy the open space between the chains. The new structure data may help understand the reasons for the sharp maximum in the Li+ ion conductivity at x ∼ 0.2.  相似文献   

17.
《Journal of Non》2007,353(13-15):1397-1401
Fluorescence spectra and decay curves of the 5D0 level for different concentrations of Eu3+ (4f6) ions in K–Ba–Al fluorophosphate glasses have been measured at room temperature and are analyzed. The Judd–Ofelt intensity parameters Ω2 and Ω4 have been determined from the intensity ratios of emission peaks corresponding to 5D0  7FJ (J = 2 and 4) to 5D0  7F1 transitions for 1.0 mol% glass. The intensity parameters thus obtained are in turn used to calculate the radiative properties of the fluorescent levels of Eu3+ ions. Second and fourth rank crystal-field parameters have been evaluated by assuming a C2V site symmetry for the local environment of Eu3+ ions to estimate the crystal-field strength experienced by Eu3+ ions in the present host. The decay profiles of the 5D0  7F2 transition of Eu3+ ions in the present glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with Eu3+ ion concentration up to 2.0 mol% and then the lifetime marginally decreases for higher Eu3+ ion concentrations.  相似文献   

18.
U. Hoppe  N.P. Wyckoff  U. Rütt 《Journal of Non》2011,357(14):2516-2521
Rare-earth ultraphosphate glasses with nominal R2O3 fractions of 10 and 15 mol% and small ionic radius (large atomic number) R3+ ions (R = Tb, Tm, Lu) are measured by X-ray diffraction at a synchrotron with photons of 119 keV (maximum scattering vector 260 nm− 1). The total correlation functions T(r) show well-resolved R-O and O-O first-neighbor peaks. In contrast to all ultraphosphate RP5O14 crystals and the ultraphosphate glasses of larger R3+ ions, where RO8 polyhedra (mean R-O coordination numbers of ~ 8 for the glasses) are observed, the R3+ ions in glasses with R = Lu, Tm, Tb have mean R-O coordination numbers of ~ 7.5. The R-O first-neighbor peaks extracted from the T(r) functions are compared with those obtained from atomic coordinates of related RP5O14 and RP3O9 crystals. The R-O distances of the ultraphosphate glasses studied are found to fall between those of the two crystals but with tails to the side of longer bonds.  相似文献   

19.
《Journal of Non》2007,353(24-25):2431-2435
Y3+(La3+), Eu3+ and Bi3+ ions co-doped sol–gel silica glasses were synthesized. Photoluminescence spectra show that there is energy transfer from Bi3+ ions to the emission band of Eu3+ ions. The co-dopants Y3+ or La3+ have strong effects on the local structure and luminescence of Eu3+ ions. For 0.5 mol% Eu3+ ions doped glasses, the co-doping of 1 mol% Bi3+ and 1 mol% Y3+ is the most appropriate for the sensitization from Bi3+ to Eu3+. The sensitization effectiveness from Bi3+ ions to Eu3+ ions was studied by changing the amount of Bi3+ and Y3+, and clusters containing rare earth ions and Bi3+ ions dominate the energy transfer processes. The comparison of luminescent R-values (the intensity ratio of 5D0  7F2/5D0  7F1 in Eu3+ ions) between glasses containing La3+ and containing Y3+ verifies the formation of clusters in sol–gel glasses. As a favorable configuration for energy transfer, the accurate design and synthesis of clusters-contained glasses may provide a new kind of luminescent materials.  相似文献   

20.
B. Lesiak  J. Zemek  O. Gedeon 《Journal of Non》2008,354(32):3840-3848
Alkali silicate glasses and melts play an important role in material science. Electron interaction with glasses is important for radioactive waste deposition, where electrons of various energies lead to irreversible changes. These changes are caused mainly by ionization and ballistic interaction of electrons with atoms, introducing structural disorder, changes in atomic composition and chemical state, accompanied by alkali ions diffusion. The Na-K silicate glass (5Na2O · 10K2O · 85SiO2), pristine and electron irradiated (doses from 25 C m−2 to 20 236 C m−2) are investigated using X-ray photoelectron spectroscopy (XPS) and the pattern recognition (PR) and fitting procedures. Changes of composition and chemical state of atoms dependent on electron dose are analyzed. At low doses (100-300 C m−2), decrease followed by increase of O and Si concentrations was observed. Surface segregation, probable desorption, and in-bulk diffusion of K and Na ions (doses of about 50 C m−2 and 2000 C m−2, respectively) were observed. This was accompanied by changes in the chemical state of K atom, where with an electron dose increasing content of elemental K form accompanied by decreasing potassium peroxide form were observed. No difference in chemical state of Si and O atoms was visible under electron irradiation dose to 20 236 C m−2, within the sensitivity of the applied method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号