首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure and the spectroscopic constants of the low lying electronic states of the NaK+ ionic molecule have been determined through using an ab initio approach involving a non-empirical pseudopotential for the Na and K cores and core valence correlation correction. The potential energy of nearly 26 electronic states of 2Σ+, 2Π, and 2Δ symmetries has been calculated up to their dissociation limit Na(4d) + K+ and Na+ + K(6s). Their spectroscopic constants (Re, De, Te, ωe, ωeχe, and Be) are derived and compared with the few available theoretical studies. A good agreement has been found for the ground state and few excited states with previous works. New potential energy curves were presented, for the first time, for the higher excited states. Numerous avoided crossing between electronic states of 2Σ+, 2Π symmetries have been localized and analyzed. Their existences are related to the charge transfer between the two ionic molecules Na+K and NaK+. Furthermore, we have determined the transition dipole moments for several states and analyzed the avoided crossings related to charge transfer between alkaline atoms.  相似文献   

2.
The emission spectrum of the B2Σ+-X2Σ+ system of CN has been observed at high-resolution using a Fourier transform spectrometer. The rotational structure of a large number of bands involving vibrational levels v = 0-15 of both electronic states has been analyzed, and improved spectroscopic constants have been determined by combining the microwave and infrared measurements from previous studies. Improved spectroscopic constants for vibrational levels up to v″ = 18 in the X2Σ+ state and v′ = 19 in the B2Σ+ state have been determined by combining the measurements of the 16-13, 18-17, 18-18, 19-15, and 19-18 bands of Douglas and Routly [Astrophys. J. Suppl. 1 (1955) 295-318] and 17-14 and 17-16 bands of Ito et al. [J. Chem. Phys. 96 (1992) 4195] with our data. The band constants obtained have been used to estimate equilibrium ground state constants for CN.  相似文献   

3.
Electronic structure and spectroscopic properties of the low-lying electronic states of the SiC radical have been determined from the ab initio based configuration interaction calculations. Potential energy curves of 32 Λ-S states of singlet, triplet, and quintet spin multiplicities have been constructed. Spectroscopic constants (re, Te, and ωe) of 23 states within 6 eV are reported and compared with the existing data. The dipole moments (μe) of most of these states at their respective equilibrium bond lengths have been computed. Effects of the spin-orbit coupling on the spectroscopic properties of SiC have been studied. The E3Π state is found to be an important one which has not been studied before. A transition of the type E3Π-X3Π is predicted to take place in the range 25 000-26 000 cm−1. The partial radiative lifetimes for several electric dipole allowed transitions such as A3Σ+-X3Π, B3Σ+-X3Π, C3Π-X3Π, D3Δ-X3Π, E3Π-X3Π etc. have been reported.  相似文献   

4.
Detailed analyses of spectroscopic and temperature-dependent magnetic susceptibility data are reported for the crystal-field split energy levels of the 7FJ and 5D4 of Tb3+ in stoichiometric single crystals of ortho-aluminate TbAlO3. The spectroscopic data include absorption spectra obtained between 2940 and 480 nm from 8 to 300 K. High resolution fluorescence spectra are reported, representing transitions from 5D4 to 7F6,5,4, at a sample temperature of 85 K. Using crystal-field modeling techniques recently adapted for low symmetry systems, we have assigned all 58 experimental Stark levels within the 7FJ and 5D4 manifolds, with a fitting standard deviation of 4.5 cm−1 (3.8 cm−1 rms error). As a further test, the theoretical Stark levels and calculated wavefunctions were used to determine the temperature dependence of the magnetic susceptibility along the c-axis of the TbAlO3 crystal. Good agreement is obtained between the calculated susceptibility and temperature-dependent magnetic data reported earlier, including a prediction of a 0.2 cm−1 splitting of the ground-state quasi-doublet. The susceptibility calculation also confirms the predicted ordering of states within the 7F6 multiplet manifold.  相似文献   

5.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

6.
The high resolution infrared spectrum of mono-isotopic F37Cl16O3 has been studied in the regions of ν1, ν2, ν4 and ν2 + ν5 bands, centered at 1060.20, 707.16, 1301.71 and 1292.15 cm−1, respectively. The ν1 and ν2 parallel bands are unperturbed so their analysis was straightforward and 3355 and 2433 transitions were assigned, respectively. The band origins, the rotational and centrifugal molecular constants in the v1 = 1 and v2 = 1 states have been determined, with standard deviation of the fits σ = 0.00019 and 0.00018 cm−1. The ν4 fundamental is affected by an anharmonic resonance with the ν2 + ν5 combination band. The kl > 0 sublevels cross at kl ? 27 because of the opposite values of and . The anharmonic resonance constant  cm−1 has been derived. The Δl = Δk = ±2 and Δl = 0, Δk = ±3 essential resonances have been found to be effective in ν4, while in ν2 + ν5 only the Δl = Δk = ±2 one was active. A total of 5721 transitions have been assigned, 25% of them belonging to ν2 + ν5. The rovibrational parameters and the interaction constants of F37Cl16O3 have been obtained. The standard deviation of the fit is 0.0006 cm−1, six times the estimated data precision. The equilibrium geometry of perchloryl fluoride has been determined from the Ae and Be constants of F35Cl16O3 and F37Cl16O3. Using the A0 and B0 constants of all the symmetric species the r0 geometry has also been derived.  相似文献   

7.
The high resolution infrared spectra of monoisotopic F35Cl18O3 and F37Cl18O3 have been studied in the region of the ν4 fundamentals, centered at 1278.3 and 1263.3 cm−1, respectively. Large perturbations are observed in both bands due to a Fermi type anharmonic resonance with the ν2 + ν5 combination bands, centered at 1270.7 cm−1 in F35Cl18O3 and 1257.3 cm−1 in F37Cl18O3. In particular, they affect the kl > 0 levels of the v4 = 1 and v2 = v5 = 1 states which cross at kl ? 18 in F35Cl18O3 and kl ? 3 in F37Cl18O3, due to the opposite values of and . The Δl = Δk = ±2 and Δl = 0, Δk = ±3 essential resonances are also effective in the excited states of the dyad in F35Cl18O3, while in F37Cl18O3 only the Δl = Δk = ±2 one is active. In the spectrum of F35Cl18O3 3423 transitions have been assigned, 10% of them belonging to ν2 + ν5. The rovibrational parameters and the interaction constants between the v4 = 1 and v2 = v5 = 1 levels have been obtained. The depertubed band origins of ν4 and ν2 + ν5 are 1277.310567(165) and 1271.753733(195) cm−1, respectively, and the anharmonic resonance constant is 2.804416(153) cm−1. For F37Cl18O3, 3022 transitions have been assigned, 38% belonging to the ν2 + ν5 combination band. The depertubed band origins are 1260.856338(123) and 1259.872338(134) cm−1, for ν4and ν2 + ν5 and the constant is 2.9350669(405) cm−1. The equilibrium geometry of perchloryl fluoride, re (ClO) = 139.7(3) pm, re (ClF) = 161.0(5) pm, and αe (OClO) = 115.7(4) degree, has been determined using the Ae and Be equilibrium constants of the four symmetric isotopologues of perchloryl fluoride, F35/37Cl16O3 and F35/37Cl18O3.  相似文献   

8.
We re-examined the submillimeter-wave transition frequencies of H2D+ (J = 110 − 111 at 372.4 GHz) and D2H+ (J = 110 − 101 at 691.7 GHz) to resolve suggested slight difference in velocity (vLSR) of these species detected in the cold pre-stellar core 16293E recently. Both H2D+ and D2H+ were generated in a magnetically confined extended-negative glow discharge of a gaseous mixture of H2/D2/Ar. A combination of small improvements in various aspects of the measurements such as double modulation technique combined with a conventional frequency modulation and magnetic field modulation and more efficient signal accumulation method allowed us to improve signal-to-noise ratio, and thus to determine the transition frequencies more accurately. Both transition frequencies for the H2D+ and D2H+ lines have been thus determined to be 372421.385(10) and 691660.483(20) MHz, respectively. These precise rest frequencies suggest that the vLSR of H2D+ and D2H+ in the pre-stellar core 16293E are indeed different as indicated in a recent astronomical observation. In addition, in this investigation, another transition of H2D+ which falls in this frequency region, J = 321 − 322 transition, has been observed at 646430.293(50) MHz. As H2D+ is a lightest asymmetric-top molecule and it is difficult to predict the rotational transition frequencies by using the effective asymmetric rotor Hamiltonian, any new observation of the rotational lines will be useful to improve the molecular parameters. The molecular constants for the ground state have been obtained for H2D+ and D2H+ by fitting these new measured frequencies together with the combination differences.  相似文献   

9.
The pure rotational transitions of HN2+ and DN2+ in the first excited vibrational states for all the fundamental vibrational modes have been observed in the range of 300-750 GHz. The molecular constants determined are much more accurate compared with those obtained from the infrared spectroscopy. The equilibrium rotational constants, Be = 46832.45 (71) MHz for HN2+ and Be = 38708.38 (58) MHz for DN2+, have been determined by correcting for the higher-order vibration-rotation interaction effects, γij, obtained by an infrared investigation. The equilibrium bond lengths are derived from these equilibrium rotational constants: re(H-N) = 1.03460 (14) Å and re (N-N) = 1.092698 (26) Å.  相似文献   

10.
The emission spectrum of TaCl has been recorded at high resolution in the 3000-35 000 cm−1 region using a Fourier transform spectrometer. The bands were observed by microwave excitation of a mixture of TaCl5 vapor and 3.0 Torr of He. Several TaCl bands have also been recorded using the laser ablation/molecular beam source at the University of New Brunswick. A rotational analysis of a number of bands has been obtained and the majority of the stronger bands have been classified into three groups with different lower state spectroscopic constants. The three lower states have been identified as having Ω″ = 0+, Ω″ = 2, and (tentatively) Ω″ = 3. The Ω″ = 0+ and Ω″ = 2 states are very close in energy and one of these two states is the ground state of TaCl.  相似文献   

11.
Continuing the systematic study of ozone high-resolution infrared spectra, we present in this paper the measurements and analyses of line positions for the 18O16O18O isotopomer. In the range 900-5000 cm−1, corresponding to the observed spectra, 15 bands are analysed: ν1, ν3, ν2+ν3, ν1+ν2, 2ν3, ν1+ν3, 2ν1, ν2+2ν3, ν1+ν2+ν3, 3ν3, 2ν1+ν3, ν2+3ν3, ν1+3ν3, ν1+ν2+3ν3, and 5ν3. As in the case of 16O3, 18O3, and 16O18O16O, the analysis of these bands is performed using effective rovibrational Hamiltonians for nine polyads of interacting upper vibrational states. To correctly reproduce all observed transitions, we have to account for resonance perturbations due to 13 “Dark” states: (0 3 0), (0 4 0), (2 1 0), (0 3 1), (1 0 2), (0 4 1), (1 1 2), (3 1 0), (0 3 2), (0 0 4), (3 2 0), (0 1 4), and (0 4 2). We present the range of observed transitions, the results for spectroscopic parameters (vibrational energy levels, rotational and centrifugal distortion constants, and resonance coupling parameters), as well as the statistics for rovibrational energy levels, calculations and measurements. A comparison of observed band centres with those predicted from an isotopically invariant potential function is discussed. The RMS deviation between predicted and directly observed band centres is ≈0.03 cm−1 up to 3000 and ≈0.25 cm−1 for all 16 bands up to 5000 cm−1.  相似文献   

12.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

13.
The weak absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) between 11 400 and 11 900 cm−1. This spectrum is dominated by the 3ν1 + ν2 + ν3 and the ν1 + ν2 + 3ν3 centered at 11 500.25 and 11 816.64 cm−1, respectively. A total of 530 energy levels belonging to eight vibrational states were determined. The rovibrational assignment process of the 840 lines attributed to D2O was mostly based on the results of new variational calculations consisting in a refinement of the potential energy surface of Shirin et al. [J. Chem. Phys., 120 (2004) 206] on the basis of recent experimental observations, and a dipole moment surface from Schwenke and Partridge [J. Chem. Phys. 113 (2000) 6592]. The overall agreement between these calculations and the observed spectrum is very good both for the line positions and the line intensities.  相似文献   

14.
Fluorophosphate glasses of composition, P2O5 + K2O + KF + MO + Al2O3 + xEu2O3 (M = Mg, Sr and Ba; x = 0.01, 0.05, 0.1, 1.0, 2.0, 4.0 and 6.0 mol%) were prepared and characterized their optical properties. Crystal-field (CF) analysis revealed a relatively weak CF strength around Eu3+ ions in the Ba based fluorophosphate glasses. The Judd-Ofelt parameters have been estimated from the oscillator strengths of 7F0 → 5D2, 7F0 → 5D4 and 7F0 → 5L6 absorption transitions of Eu3+ ions and were used to evaluate the radiative properties of the 5D0 → 7FJ (J = 0-4) transitions. Considerable variation has been observed in the relative intensity ratio of 5D0 → 7F2 to 5D0 → 7F1 transitions of Eu3+ ions due to change in the alkaline earth metal ions. The decay of the 5D0 level shows single exponential and less sensitive to Eu3+ ions concentration as well as MgO/SrO/BaO modifiers.  相似文献   

15.
The pure rotational spectrum of the molecular ion TiF+ in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF+ was made in an AC discharge from a mixture of TiCl4, F2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl+, which is perturbed in the ground state. The data were fit with a case (a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF+, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF+ relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti2+F configuration. A similar decrease in bond length was found for TiCl+ relative to TiCl.  相似文献   

16.
Absorption spectra of HDO/D2O mixtures recorded in the 5600-8800 cm−1 region with a total pressure of water from 13 up to 18 hPa and an absorption path length of 600 m have been analyzed in order to obtain new spectroscopic data for HD18O and D218O. In spite of the low natural 18O concentration (about 2×10−3 with respect to the 16O one), about 1100 transitions belonging to HD18O and more than 280 transitions belonging to D218O have been assigned. Most of the D218O transitions belong to the ν1+ν2+ν3 and 2ν1+ν3 bands. Sets of energy levels for seven vibrational states of D218O and four states of HD18O are reported for the first time. The comparison of the experimental data with the calculated values based on Partridge-Schwenke global variational calculations is discussed.  相似文献   

17.
The rotational spectra of 28SiF2, 29SiF2, and 30SiF2 in their ground vibrational states, as well as those of 28SiF2 in the v1 = 1, v2 = 1, v3 = 1, and v2 = 2 excited states have been studied in selected frequency regions between 80 and 700 GHz. Transitions involving a large range of quantum numbers have been observed, so that precise rotational and quartic centrifugal distortion constants could be determined for each of the spectra investigated. In addition, the complete set of sextic distortion constants was also obtained for the most abundant isotopomer in its ground vibrational state. The quadratic and cubic force constants of silicon difluoride have been refined by a least-squares procedure using a larger and more precise set of data.  相似文献   

18.
Absorption and fluorescence spectra observed between 450 and 750 nm at 85 K and room temperature (300 K) are reported for Eu3+(4f6) in single-crystal Czochralski-grown garnet, Gd3Ga5O12 (GGG). The spectra represent transitions between the 2S+1LJ multiplets of the 4f6 electronic configuration of Eu3+ split by the crystal field of the garnet. In absorption, Eu3+ transitions are observed from the ground state, 7F0, and the first excited multiplet, 7F1, to multiplet manifolds 5D0, 5D1, and 5D2. The Stark splitting of the 7FJ multiplets (J=0-6) was determined by analyzing the fluorescence transitions from 5D0, 5D1, and 5D2 to 7FJ. The Eu3+ ions replace Gd3+ ions in sites of D2 symmetry in the lattice during crystal growth. Associated with each multiplet manifold are 2J+1 non-degenerate Stark levels characterized by one of four possible irreducible representations (irreps) assigned by an algorithm based on the selection rules for electric-dipole (ED) and magnetic-dipole (MD) transitions between Stark levels in D2 symmetry. The quasi-doublet in 5D1 was characterized by an analysis of the magneto-optical spectra obtained from the transitions observed between 5D1 and 7F1. A parameterized Hamiltonian defined to operate within the entire 4f6 electronic configuration of Eu3+ was used to model the experimental Stark levels and their irreps. The crystal-field parameters were determined through use of a Monte-Carlo method in which nine independent crystal-field parameters, were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviation between 57 calculated-to-experimental Stark levels is 5.9 cm−1. The choice of coordinate system, in which the nine are real and the crystal-field z-axis is parallel to the [0 0 1] crystal axis and perpendicular to the xy plane, is identical to the choice we used previously in analyzing the spectra of Er3+ and Ho3+ garnets.  相似文献   

19.
We applied the resonant two-photon ionization and mass-analyzed threshold ionization spectroscopic techniques to record the vibronic and cation spectra of m-chloroaniline. The band origin of the first electronic transition was found to be 33 658 ± 2 cm−1, whereas the adiabatic ionization energy was determined to be 63 958 ± 5 cm−1. Within our experimental detection limit, these measured values are the same for both of the 35Cl and 37Cl isotopomers. The observed active modes of this molecule in the electronically excited S1 and cationic ground D0 states mainly involve the in-plane ring deformation and substituent-sensitive bending vibrations.  相似文献   

20.
Infrared spectra of bicyclo[1.1.1]pentane (C5H8) have been recorded at a resolution (0.0015 cm−1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of three of the ten infrared-allowed bands, ν14(e′) at 540 cm−1, ν17 (a2″) at 1220 cm−1, ν18(a2″) at 832 cm−1, and a partial analysis of the ν11(e′) band at 1237 cm−1. The upper states of transitions involving the lowest frequency mode, ν14(e′), show no evidence of rovibrational perturbations but those for the ν17 and ν18 (a2″) modes give clear indication of Coriolis coupling to nearby e′ levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm−1): B0 = 0.2399412(2), DJ = 6.024(6) × 10−8, DJK = −1.930(21) × 10−8. For the unperturbed ν14(e′) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm−1. The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号