首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在粉末打印骨支架的工艺中,粘结剂的性质是影响骨支架质量的关键因素。采用分子动力学的模拟方法对三种常用高分子粘结剂的体系进行了构建和模拟,从微观分子层面研究了聚合物粘结剂PVP,PAM和PVA的部分性质,比如密度、内聚能及力学性能,并对三种粘结剂的性能参数进行了比较,对其内在关系进行了揭示。此外,还通过建立粘结剂与羟基磷灰石的界面相互作用模型,对三种粘结剂与羟基磷灰石的界面结合能进行了计算和比较,分析了影响高聚物粘结特性的根本原因。这一工作不仅对常用粘结剂的基本性质进行了预估,而且对骨支架粉末粘结工艺中粘结剂的选择提供了理论依据。  相似文献   

2.
结构加固中应用的环氧树脂等有机粘结剂的耐高温性不足,升温条件下易丧失力学性能导致结构失效。本文以偏高岭土基地聚物作为无机粘结剂,通过不同温度下的钢-钢拉伸剪切试验和表层嵌贴CFRP-混凝土拔出试验,考察地聚物粘结剂在升温条件下的粘结性能变化规律。试验结果表明:在常温环境下,树脂粘结剂的粘结性能优于地质聚合物粘结剂的粘结性能;但在本文试验设置的升温条件下,树脂粘结剂试件的粘结承载力明显下降,而地质聚合物粘结剂试件的粘结承载力则基本不受温度变化的影响。对粘结界面的粘结滑移本构关系的分析表明,随着温度升高,树脂粘结剂的最大粘结应力逐渐降低,其对应的滑移量也有所增大;与之相比,地聚物粘结剂的最大粘结应力及滑移均未随温度升高发生显著变化,证明了地聚物粘结剂的粘结性能对本文试验温度不敏感。这表明地质聚合物具有较好的耐高温性能,有发展无机粘结剂的潜力。  相似文献   

3.
采用分子动力学方法模拟硅探针在空位缺陷和Stone-Wales(SW)缺陷石墨烯上的滑移过程,研究空位缺陷和SW缺陷对石墨烯摩擦力的影响.研究结果表明:两种缺陷石墨烯摩擦力大于完美石墨烯,空位缺陷使石墨烯界面势垒增大导致能量耗散增加,摩擦力增大;SW缺陷使石墨烯表面形成凸起,阻碍探针滑移,摩擦力增大.空位缺陷石墨烯平均摩擦力随缺陷浓度的增加而增加,Y向空位缺陷石墨烯平均摩擦力大于X向,这都是由空位陷处能量势垒和缺陷与探针切向作用距离共同决定的.SW2型缺陷石墨烯摩擦力大于SW1型,X向SW2型缺陷石墨烯摩擦力大于Y向SW2型,因为存在相邻五边形碳原子环结构的石墨烯表面更容易产生凸起,摩擦力较大.以上研究结果完善了缺陷石墨烯的摩擦机制,对设计和开发石墨烯微纳器件提够了理论依据和指导.  相似文献   

4.
黄培彦  廖忻  周昊  陈钟松 《实验力学》2015,30(3):269-274
为改善普通高强混凝土的抗裂及耐久性能,本课题组研发了一种新型钢纤维聚合物结构混凝土(SFPSC),并应用于大跨度桥梁上部结构。为了进一步探讨该类新材料的环境疲劳/耐久性能,考虑我国南方和沿海地区桥梁服役时的湿热环境影响,设计了不同的湿热条件(室温大气环境、50℃和80%R·H、50℃和90%R·H)对SFPSC试件进行预处理后,实施了三点弯曲疲劳实验,获得了SFPSC的应力-疲劳寿命(S-N)曲线,并给出了其疲劳方程。研究结果表明,湿热环境对SFPSC的疲劳性能影响较大,高温高湿会导致其疲劳寿命降低。  相似文献   

5.
聚合物复合薄膜改性橡胶表面结构及其摩擦性能研究   总被引:3,自引:0,他引:3  
采用真空电子束分散聚氨酯、聚四氟乙烯及其混合物靶材制备单层、双层和复合薄膜改性丁腈橡胶表面,在MMT型球-盘微摩擦磨损试验机上评价其摩擦性能.结果表明,当混合物靶材中聚氨酯和聚四氟乙烯质量比为1:1时,复合薄膜的摩擦系数较低,辉光放电等离子体预处理橡胶基体表面对薄膜结构及其摩擦性能影响显著.  相似文献   

6.
采用分子动力学模拟方法研究了公度、不公度2种情况下碳纳米管在石墨基底上运动的摩擦机制与能量耗散,计算中先使碳纳米管在石墨基底上弛豫平衡,而后施加持续500 fs的固定外力,撤去外力后碳纳米管在基底上减速至相对基底静止.结果表明:在公度条件下,碳纳米管先在石墨基底上滑动,动能降低到一定值后出现翻转、滚动、滑动交替进行的现象.所受侧向力(即摩擦力)在滑动阶段呈现周期性变化,在开始滚动时摩擦力达到负向最大;在不公度条件下,碳纳米管在石墨基底上一直处于滑动状态,侧向力始终为负值;在公度情况下,侧向力对称性的破缺由碳纳米管底部原子与石墨基底原子间的法向趋近与分离引起,并由此而产生摩擦;碳纳米管与石墨基底原子间的相互作用为斥力-碰撞型,黏性摩擦造成了能量耗散.  相似文献   

7.
与石墨烯相比,氧化石墨烯(graphene oxide, GO)的亲水性、分散性和反应活性更好,更易于作为增强材料而研发生成性能超常的复合材料,但另一方面,由于其电子结构较为复杂,致使目前有关力学方面的研究存在一定差异.本文利用分子动力学方法,建立了羟基、羧基和环氧基等官能团随机分布的GO原子模型;通过单向拉伸模拟,分析了其断裂行为,结果表明,远离羟基和羧基的环氧基对断裂具有"诱导"作用,并从化学成键、体系能量和应力分布三个角度对其机理进行了阐释;此外,进一步研究了拉伸应力$\!$-$\!$-$\!$应变曲线、极限强度、极限应变等力学性能与含氧官能团覆盖度间的关系,结果表明,极限强度、极限应变均随含氧官能团覆盖度的增大而呈减小趋势.分析认为,主要原因是官能团的出现对石墨烯面内的sp$^{2}$杂化形式造成了破坏,进而使得原子间键合能弱化,随着含氧官能团的覆盖度的增大,被弱化的键合能的数量和程度将越大,从而使得GO的极限强度、极限应变等越低. 研究结果可为GO的基础研究和工程应用提供参考.   相似文献   

8.
利用分子动力学模拟了智能切削技术中的离子注入过程和退火至开裂过程,重点研究退火至开裂过程中注氢单晶硅微纳尺度下的开裂行为,以及氢原子数目、硅晶体缺陷大小和平均正应力等参数沿注入方向分布的演化规律.研究结果表明:硅晶体开裂经历空位点缺陷形核和生长,但无明显的空隙缺陷局部扩展、空位缺陷生长并引起显著的空隙缺陷局部扩展、空隙缺陷Ostwald生长等三个阶段.开裂位置与注入过程后氢原子分布的浓度峰重合.在三个阶段中,由于氢扩散和变形的影响,氢原子、晶体缺陷和应力的分布随退火至开裂过程进展呈现不同的演化特性.此外,化学成键分析表明氢与硅发生化学反应,形成不同形式的硅氢化合物,退火至开裂过程中硅氢化合物将发生转化.论文建立的系统定量分析智能切削中晶片开裂的数值方法,可进一步用于智能切削技术的改进和优化.  相似文献   

9.
采用Verlet-List和动态存储的分子动力学方法,对饱和汽液平衡体系中的分子行为进行了模拟,研究了汽液界面的微观物理特征和应力特性以及温度变化对汽液界面热力学性质的影响。结果表明:汽液界面在空间和时间上都是涨落起伏的非稳定区域,且分子由液态向气态转变是一个突变过程;汽液过渡区厚度与局部界面涨落区宽度相同,验证了汽液过渡区和分界面涨落区的统一性;当温度从0.7变化至1.1时,气液界面厚度从4增加到9.5,而表面张力和两相密度差则不断减小;当温度接近临界温度时,系统表面张力趋近于0。  相似文献   

10.
低熔点金属的层裂是目前延性金属动态断裂的基础科学问题之一。采用非平衡态分子动力学方法模拟了冲击压力在13.5~61.0 GPa下单晶和纳米多晶锡的经典层裂和微层裂过程。研究结果表明:在加载阶段,冲击速度不影响单晶模型中的波形演化规律,但影响纳米多晶模型中的波形演化规律,其中经典层裂中晶界滑移是影响应力波前沿宽度的重要因素;在单晶模型中,经典层裂和微层裂中孔洞成核位置位于高势能处;在纳米多晶模型中,经典层裂中的孔洞多在晶界(含三晶界交界处)处成核,并沿晶定向长大,产生沿晶断裂,而微层裂中孔洞在晶界和晶粒内部成核,导致沿晶断裂、晶内断裂和穿晶断裂;孔洞体积分数呈现指数增长,相同冲击速度下单晶和纳米多晶Sn孔洞体积分数变化规律一致;经典层裂中孔洞体积分数曲线的两个转折点分别表示孔洞成核与长大的过渡和材料从损伤到断裂的灾变性转变。  相似文献   

11.
纳米晶铜单向拉伸变形的分子动力学模拟   总被引:13,自引:0,他引:13  
纳米材料是由尺度在1-100nm的微小颗粒组成的体系,由于它具有独特的性能而备受关注。本文简要地回顾了分子动力学在纳米材料研究中的应用,并运用它模拟了平均晶粒尺寸从1.79-5.38nm的纳米晶体的力学性质。模拟结果显示:随着晶粒尺寸的减小,系统与晶粒内部的原子平均能量升高,而晶界上则有所下降;纳米晶体的弹性模量要小于普通多晶体,并随着晶粒尺寸的减小而减小;纳米晶铜的强度随着晶粒的减小而减小,显示了反常的Hall-Petch效应;纳米晶体的塑性变形主要是通过晶界滑移与运动,以及晶粒的转动来实现的;位错运动起着次要的、有限的作用;在较大的应变下(约大于5%),位错运动开始起作用;这种作用随着晶粒尺寸的增加而愈加明显。  相似文献   

12.
13.
A problem of compacting a mixture of copper and molybdenum nanopowders under the action of external loading generated by a spherical piston is solved by the molecular dynamics method. Interatomic interaction is calculated with the use of a multiparticle potential obtained by the embedded atom method. It is shown that compaction leads to significant deformations in copper, resulting in the loss of the crystalline structure; copper nanoparticles melt and fill the entire porous space. Molybdenum particles are deformed to a much smaller extent; they are not destroyed and preserve their crystalline structure. Under high loading, there appear voids in copper at the stage of compact extension; these voids rapidly grow in size and coagulate into one large void located in the nanocell center. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 11–23, September–October, 2008.  相似文献   

14.
飞秒激光辐照铝材料的分子动力学数值模拟   总被引:1,自引:0,他引:1  
采用大尺度分子动力学方法对飞秒激光辐照金属铝材料的效应进行了数值模拟。利用分子动力学方法给出了飞秒激光辐照后,材料表面发生熔化和喷溅,冷凝后形成一层很薄的多孔介质的物理图像,及产生的应力波传播过程等。数值模拟结果表明分子动力学方法可以用于飞秒激光对材料辐照效应的研究。  相似文献   

15.
建立了半无限弹性纳米镍板Ⅰ型裂纹扩展的二维分子动力学计算模型。采用镶嵌原子法描述原子间作用,模拟了纳观裂纹区在远场常应变率作用下变化直至起始扩展的过程。同时基于原子势函数和二维正三角形晶格常数计算材料弹性参数,进行连续介质力学断裂分析。分子动力学模拟和宏微观分析均得到裂纹起始扩展的临界时刻、裂尖应力场和原子平均能量。二者的结果比较表明本文的二维简化模型和模拟方法可以准确地描述Ⅰ型裂纹扩展的物理本质,基于原子势函数和晶格常数的连续介质力学分析也是一种可行的研究纳米材料断裂的方法。  相似文献   

16.
双马来酰亚胺树脂是高性能碳纤维复合材料的新型基体材料,在航空航天等领域具有广泛的应用。目前,相关材料的改性技术、制备工艺以及材料性能等考察仍以实验为主,数值模型及相应的分析方法则相对较少。本文构建了4,4′—二苯甲烷双马来酰亚胺(BDM)和二烯丙基双酚A(DABPA,固化剂)的分子尺度数值模型,实现了与实验过程基本一致的交联反应过程,考察了BDM/DABPA树脂材料的力学性质以及由碳纳米管填充所引起的强化规律和机理。结果表明,树脂材料的力学性质随着交联程度的提高而增加,而短碳纳米管的掺杂也可以进一步增强力学性质。研究工作为基于双马树脂的复合材料设计构建了数值分析技术,为相关材料的性能改进从微观层次提供了有价值的参考。  相似文献   

17.
张浩  田霞  顾鑫  章青 《计算力学学报》2024,41(1):194-201
水化硅酸钙是水泥基材料的主要水化产物,其孔隙内的水分是影响水泥基材料抗冻性的主要因素。本文基于粗粒化分子动力学方法研究水化硅酸钙孔隙水的冻结机制,针对水的粗粒化P4粒子和水化硅酸钙胶体颗粒,建立了水化硅酸钙孔隙水的冻结模型。根据此模型计算了不同孔径孔隙水冰点,分析了水泥基材料孔径孔隙在冻融破坏中的危害程度;模拟得到了水化硅酸钙孔隙内水的冻结分布特征和密度分布特征。研究工作表明,本文建立的模型有效提高了分子动力学模拟水化硅酸钙孔隙水冻结问题的规模,为后续进行水泥基材料的冻融破坏分析提供了研究基础。  相似文献   

18.
In this work, non-equilibrium molecular dynamics simulations are used to generate the flow of linear polymer chains (monomer-springs with FENE potential) and a Lennard–Jones fluid (Newtonian fluid) through a contraction–expansion (4:1:4) geometry. An external force field simulating a constant pressure gradient upstream the contraction region induces the flow, where the confining action of the walls is represented by a Lennard–Jones potential. The equations of motion are solved through a multiple-step integration algorithm coupled to a Nosé-Hoover dynamics [S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519], i.e., to simulate a thermostat, which maintains a constant temperature. In this investigation, we assume that the energy removed by the thermostat is related to the viscous dissipation along the contraction–expansion geometry. A non-linear increasing function between the pressure drop and the mean velocity along the contraction for the linear molecules is found, being an order of magnitude larger than that predicted for the Lennard–Jones fluid. The pressure drop of both systems (the linear molecules and Lennard–Jones fluid) is related to the dissipated energy at the contraction entry. The large deformation that the linear molecules experience and the evolution of the normal stress at the contraction entry follow a different trajectory in the relaxation process past the contraction, generating large hysteresis loops. The area enclosed by these cycles is related to the dissipated energy. Large shear stresses developed near the re-entrant corners as well as the vortex formation, dependent on the Deborah number, are also predicted at the exit of the contraction. To our knowledge, for the first time, the excessive pressure losses found in experimental contraction flows can be explained theoretically.  相似文献   

19.
We present a continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries that are allowed to be nonplanar or nonequilibrium. In our continuum framework, we define a dislocation density potential function on the dislocation array surface or grain boundary to describe the orientation dependent continuous distribution of dislocations in a very simple and accurate way. The continuum formulations incorporate both the long-range dislocation interaction and the local dislocation line energy, and are derived from the discrete dislocation model. The continuum framework recovers the classical Read–Shockley energy formula when the long-range elastic fields of the low angle grain boundaries are canceled out. Applications of our continuum framework in this paper are focused on dislocation structures on static planar and nonplanar low angle grain boundaries and misfitting interfaces. We present two methods under our continuum framework for this purpose, including the method based on the Frank׳s formula and the energy minimization method. We show that for any (planar or nonplanar) low angle grain boundary, the Frank׳s formula holds if and only if the long-range stress field in the continuum model is canceled out, and it does not necessarily hold for a total energy minimum dislocation structure.  相似文献   

20.
Molecular dynamics simulations are performed to study the thermomechanical properties of copper nanofilms at different temperatures and extremely-high loading rates. The results show a drastic temperature softening effect on the film strength and modulus. The increase of strain rate could result in a much higher strength while the modulus is relatively less affected. It is shown, based on the stress results, that the observed “smaller is softer” and “smaller is stronger” behaviors of nanofilms might be due to the surface plasticity and the volumetric dislocations, respectively. It is also found that the thinner a nanofilm, the smaller the thermal expansion coefficient. The present work reveals that the quasistatic thermomechanical properties of bulk copper at room temperature might be inadequate for the continuum-based study of thermomechanical response of copper nanofilms due to ultrafast laser heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号