首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of polyacrylamide gels was studied using proton spin–lattice relaxation and PFG diffusion methods. Polyacrylamide gels, with total polymer concentrations ranging from 0.25 to 0.35 g/ml and crosslinker concentrations from 0 to 10% by weight, were studied. The data showed no effect of the crosslinker concentration on the diffusion of water molecules. The Ogston–Morris and Mackie–Meares models fit the general trends observed for water diffusion in gels. The diffusion coefficients from the volume averaging method also fit the data, and this theory was able to account for the effects of water-gel interactions that are not accounted for in the other two theories. The averaging theory also did not require the physically unrealistic assumption, required in the other two theories, that the acrylamide fibers are of similar size to water molecules. Contrary to the diffusion data,T1relaxation measurements showed a significant effect of crosslinker concentration on the relaxation of water in gels. The model developed using the Bloch equations and the volume averaging method described the effects of water adsorption on the gel medium on both the diffusion coefficients and the relaxation measurements. In the proposed model the gel medium was assumed to consist of three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and a bisacrylamide crosslinker phase). The effects of the crosslinker concentration were accounted for by introducing the proton partition coefficient,Keq, between the bulk water and crosslinker phase. The derived relaxation equations were successful in fitting the experimental data. The partition coefficient,Keq, decreased significantly as the crosslinker concentration increased from 5 to 10% by weight. This trend is consistent with the idea that bisacrylamide tends to form hydrophobic regions with increasing crosslinker concentration.  相似文献   

2.
We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.  相似文献   

3.
Atomistic simulations are reported of a model of CO2 in water. CO2 is modelled by partial charges and Lennard-Jones interaction sites on each atom; the SPC/E model for water is used. Good agreement with experiment is found for the translational diffusion constants. The variation of the dynamics with the potential parameter was investigated. As expected, the orientational correlation times increase as the magnitude of the quadrupole moment is increased, but the translational diffusion constants are found to be surprisingly insensitive to the magnitude of the CO2 quadrupole moment. The translational friction coefficient was resolved into electrostatic, Lennard-Jones and cross-terms; the Lennard-Jones contribution is found to be the largest. Varying the Lennard-Jones size parameter affects both translational and reorientational motion. In order to try to understand these results further, the variation of solvation free energy was investigated and the solvent structure around carbon dioxide was examined as the electrostatic and Lennard-Jones parameters were changed. The temperature dependence of the self-diffusion constant of pure SPC/E water was determined.  相似文献   

4.
王兴荣  郑浩平 《中国物理 B》2009,18(5):1968-1978
First-principles, all-electron, \textit{ab initio} calculations have been performed to construct an equivalent water potential for the electronic structure of serine (Ser) in solution. The calculation is composed of three steps. The first step is to search for the configuration of the Ser + NH2O system with a minimum energy. The second step is to calculate the electronic structure of Ser with the water molecule potential via the self-consistent cluster-embedding method (SCCE), based on the result obtained in the first step. The last step is to calculate the electronic structure of Ser with the dipole potential after replacing the water molecules with dipoles. The results show that the occupied states of Ser are raised by about 0.017~Ry on average due to the effect of water. The water effect can be successfully simulated by using the dipole potential. The obtained equivalent potential can be applied directly to the electronic structure calculation of protein in solution by using the SCCE method.  相似文献   

5.
Thin films of aluminum were prepared under ultra-high vacuum conditions in order to investigate the low temperature, low pressure adsorption of water vapor by the aluminum. The kinetics of the water vapor-aluminium reaction have been found to be essentially different than the oxygen-aluminum reaction previously reported. In contrast to the “dry” oxygen uptake kinetics, a plot of the sticking coefficient of H2O versus the total weight gain of the film indicates that the sticking coefficient of H2O passes through a maximum. As a result of the present mass adsorption measurements of water by fresh aluminum surfaces and Huber and Kirk's previous contact potential studies of an oxidized aluminum surface upon exposure to water vapor, a model is suggested, based on the simultaneous lateral growth of oxide nuclei and first order adsorption of water dipoles on the growing oxide nuclei surfaces. The model quantitatively describes the kinetics of the mass adsorption of water and also predicts the contact potential behavior of a fresh aluminum surface upon exposure to water vapor. A sticking coefficient of approximately 0.05 is indicated for H2O on bare aluminum while 0.11 corresponds to the sticking coefficient of water dipoles on the oxide nuclei surfaces.  相似文献   

6.
The effect of the macrostructure (grain size) and the microstructure (crystal lattice parameters) factors on the coulombic efficiency of Na0.1CrS2 cathodes in secondary Li cells is studied. An attempt is made to employ Atlung's model in assessing the chemical diffusion coefficient of Li+ in the host structure leading to more realistic values with respect to effective interface area. The possibility of enhancing the mobility rate of Li+ by intercalation of water in the host structure is revealed. Using Atlung's model as a guideline it was possible to improve considerably the performance of the Na0.1CrS2 cathodes, while retaining their good cycling stability.  相似文献   

7.
In this paper, CaO sintering in the presence of water vapor for CO2 capture were carried out by ReaxFF(Reactive Force Field) molecular dynamics. The CaO sintering model was simulated at different temperatures (873 K-1273 K) and atmospheres (CO2, H2O), respectively. The results showed that water vapor could significantly promote the sintering process of CO2 capture by CaO. The Mean-square displacement (MSD) and Boltzmann–Arrhenius dependency were used to study the diffusion properties of CaO particles. The decreased diffusion activation Ea and increased pre-exponential factor D0 indicate that CaO particles have a stronger initial diffusivity and a lower diffusion barrier in the presence of CO2 and H2O. The inner and outer regions of CaO atoms were analyzed and it was found that the activation energy is the main factor to enhance the diffusion in the presence of CO2 for CaO sintering process, whereas the pre-exponential factor dominates with both CO2 and H2O. Water vapor enhanced the sintering pf CaO carbonation reaction is mainly achieved by promoting atoms in the inner layers of CaO particles. The types and numbers of sintering atoms during the sintering process were counted, and the distances between Ca and O atoms were calculated, which found that water vapor first dissociates into hydroxyl and H protons on the CaO surface, and the hydroxyl group will stay on the surface of CaO and combine with CO2, while the H proton will combine with O inside CaO to promote the sintering of CaO further.  相似文献   

8.
We have investigated the algebraic structure of the Fokker-Planck equation with a variable diffusion coefficient and a time-dependent mean-reverting force. Such a model could be useful to study the general problem of a Brownian walker with a space-dependent diffusion coefficient. We also show that this model is related to the Fokker-Planck equation with a constant diffusion coefficient and a time-dependent anharmonic potential of the form V(x, t) = ?a(t)x 2 + b ln x, which has been widely applied to model different physical and biological phenomena, e.g. the study of neuron models and stochastic resonance in monostable nonlinear oscillators. Using the Lie algebraic approach we have derived the exact diffusion propagators for the Fokker-Planck equations associated with different boundary conditions, namely (i) the case of a single absorbing barrier, and (ii) the case of two absorbing barriers. These exact diffusion propagators enable us to study the time evolution of the corresponding stochastic systems. Received 23 October 2001 and Received in final form 24 December 2001  相似文献   

9.
张逸新  许强 《物理学报》1999,48(4):735-743
研究了满足Rayleigh-Gans-Debye(RGD)近似条件的球形稀溶液的光学和粒径多分散性耦合的动态光散射技术检测问题.在分析中采用了球壳L和球核R-L都连续变化且壳层变化满足L=αR (其中α<1和R是壳球半径)的壳-核硬球模型.得出了在溶剂折射率nm和壳层折射率ns匹配时,即nm=ns,平均散射强度I(q)和等效扩散系数De(q)与散射矢q间的关系.给出了用以检测窄分散系统小多分散性 关键词:  相似文献   

10.
Two techniques used for evaluating internal magnetic field gradient (G i), spin-echo (SE) and diffusion decay internal field (DDIF), were investigated at 9.4 T and compared in porous systems characterized by different pores size ranging from 4 to 96 μm with magnetic susceptibility difference between solid and liquid phase, \(\Delta \chi\)  ≈ 1.6 ppm. Since diffusion of a fluid in a solid porous matrix plays a role in both SE and DDIF methods, we investigated these two different methods by highlighting their dependence on characteristic parameters and length scales used to describe diffusion behavior of fluids in porous systems. Therefore, G i behavior as a function of the dephasing length (l g), diffusion length (l d) and pores size (l s) was obtained. Moreover G i was evaluated by using both free diffusion and measured apparent diffusion coefficient of water, to quantify diffusion effect in different porous samples. This study gives more insight into the physical dynamics process to explain contrast mechanisms recently exploited by DDIF and SE applications for cancellous bone quality measurements.  相似文献   

11.
1-D1H nuclear magnetic resonance profiles have been used to image the penetration of D2O into waterlogged archaeological wood. A series of well characterised plugs were sampled from different depths, reflecting different degrees of degradation and orientation with respect to the wood structure, of an oak timber from the Mary Rose. The ingress of D2O was Fickian in character and the diffusion coefficients,D, are reported as a function of depth into the timber for each orientation. The behaviour ofD could be approximated by a surface layer, with a higher diffusion coefficient, and a lower diffusion core region. The differences in the values ofD in the different orientations are rationalised in terms of the known structure of decayed wood. Theoretical uptake curves were calculated from a numerical evaluation of the analytical solution for diffusion into a multiple-layer model. Saturation of the surface layer was predicted to occur prior to diffusion into the core, with a characteristic change of gradient displayed in the uptake curve. Good agreement was achieved with experiments that sampled the different decay environments. Concentration distributions, and uptake curves, were calculated using these models for a typical archaeological timber.  相似文献   

12.
A mathematical model proposed for diffusion in spherical particles can be solved on a digital computer. The model includes particle size distribution and variable diffusion coefficient of the form D = DoeαC, where D is the diffusion coefficient, D0 and α are constants, and C is the moisture content. Isothermal experimental measurements were made gravimetrically on a Cahn electrobalance by vacuum sorption techniques. The model adequately predicts the absorption characteristics of water vapor in starch granules. Although swelling is neglected in the model, it does contribute to sorption characteristics.  相似文献   

13.
A photothermal deflection (PD) technique was applied to measure the binary diffusion coefficients of various gases (CO2–N2, CO2–O2, N2–He, O2–He, and CO2–He). With an in-house-made Loschmidt diffusion cell, a transverse PD system was employed to measure the time-resolved PD signal associated with the variation of the thermal diffusivity and the temperature coefficient of the refractive index of the gas mixture during the diffusion. The concentration evolution of the gas mixture was deduced from the PD amplitude and phase signals based on our diffraction PD model and was processed using two mass-diffusion models explored in this work for both short- and long-time diffusions to find the diffusion coefficient. An optical fiber oxygen sensor was also used to measure the concentration changes of the mixtures with oxygen. Experimental results demonstrated that the binary diffusion coefficients precisely measured with the PD technique were in agreement with the literature values. Moreover, the PD technique can measure the diffusion coefficients of various gas mixtures with both short- and long-time diffusions. In contrast, the oxygen sensor is only suitable for the long-time diffusion measurements of the gas mixtures with oxygen. PACS 78.20.Nv; 51.20.+d  相似文献   

14.
We introduce a volumetric analysis technique to characterize the solubility of hydrogen dissolved in polymers and its diffusion coefficient by electrical capacitance measurement electrodes to determine the water level in graduated cylinders. This new and simple technique measures the volume of hydrogen released from rubber inside a graduated cylinder after a sample is exposed to high-pressure hydrogen and subsequent decompression. A diffusion analysis program is utilized to determine the total uptake (C0) and diffusivity (D) of hydrogen, which are used to calculate the solubility (S) and permeability (P). This method is applied to spherical rubber samples of nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluoroelastomer (FKM), which are potential sealing materials for H2 energy infrastructures. C0 follows Henry's law for all samples. No sample size and pressure dependence is observed for S, whereas an appreciable size dependence for the three rubbers is detected for D. The uncertainty is evaluated by considering uncertainty factors that affect the measurement. The correlation between D and density of rubber is found. The developed method can be utilized as a standard test for the transport properties versus pressure of various polymer membranes regardless of the sample shapes and size.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):2029-2032
Symmetrical cells consisting of Ni–Y0.20Ti0.18Zr0.62O1.90 (Ni–YZT) cermet electrodes on a Ni–YSZ support have been investigated with respect to the hydrogen/water partial pressures. Impedance spectra at open circuit potential were obtained as function of temperature and analysed in terms of a fractal finite length Gerischer Impedance. For fine and coarse microstructures of the Ni–YZT electrodes, a consistent set of model parameters could be obtained. The results indicate that surface diffusion rather than bulk diffusion plays a role in the hydrogen/water reaction but also that a fine-grained fraction in the mixed conducting YZT phase is advantageous for the overall electrode performance and the surface exchange reaction.  相似文献   

16.
王晓坡  宋渤  吴江涛  刘志刚 《物理学报》2010,59(10):7158-7163
采用反转法计算得到了O2-CO2混合气体新的势能参数.在此基础上,根据分子动力学理论,计算了混合气体在零密度下的输运性质,包括黏度系数、热扩散系数和热扩散因子,计算的温度范围为273.15—3273.15 K.与实验值比较表明,计算结果可以满足实际工程应用.  相似文献   

17.
Polyacrylonitrile nascent fibers, as spun into the coagulation bath, were prepared by solution polymerization and wet-spinning, and a dimethyl sulphoxide (DMSO)/H 2 O coagulation bath system was adopted. The effect of coagulation bath DMSO concentration on the structure and properties of the nascent fibers was studied in detail, and the diffusion coefficients of DMSO and H2O for different bath DMSO concentrations were calculated by Crank's equation to explain the structural changes of the nascent fibers, including cross-section, core/shell structure, and surface morphology. The surface morphology of nascent fibers was observed by field emission scanning electron microscopy (FESEM). The results showed that as the coagulation bath DMSO concentration increased, the diffusion coefficients gradually decreased. More circular cross-section, less core/shell structure, higher degree of crystallinity, larger crystal size, larger bulk density, and higher sound velocity of the nascent fibers were obtained when thecoagulation bath DMSO concentration was 70 wt% compared to lower or higher bath DMSO concentration. Moreover, compared with the nascent fibers spun in other bath DMSO concentrations, smoother surfaces of the nascent fibers were obtained at the bath DMSO concentration of 70 wt%.  相似文献   

18.
顾斌  张丰收  黄余改  方夏 《中国物理 B》2010,19(3):36101-036101
The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order |q| of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.  相似文献   

19.
In this work, Complex Robert–Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert–Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom–atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.  相似文献   

20.
Transport coefficients (shear viscosity, volume viscosity, thermal conductivity, and mass and thermal diffusion coefficients) of H–N2 mixtures in the dilute-gas limit have been calculated from the intermolecular potential in the temperature range 300–2000K using the classical trajectory method. The intermediate results pertaining to H–N2 binary interactions are reported, mainly in terms of cross-section ratios. Cross-sections evaluated with the Mason–Monchick approximation yield very good results for this system, the largest deviations, about 2.5%, being observed for the thermal diffusion coefficient. The accuracy here of this approximation can primarily be attributed to a light H atom and a weakly non-spherical potential resulting in a high rotational collision number. Furthermore, we investigate to which H–N2 cross-sections and their ratios the values of the mixture transport coefficients are most sensitive. Our results indicate that, for some cross-section ratios, reliance on universal correlations at high temperatures, often used in flame codes, can induce sizeable errors in the thermal conductivity coefficient and especially in the thermal diffusion coefficients. We also observed that the volume viscosity is particularly sensitive to the value of the cross-section for internal energy relaxation in H–N2 collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号