首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary LetX t , ...,X n be random variables forming a realization from a linear process where {Z t } is a sequence of independent and identically distributed random variables with E|Z t |<∞ for some ε>0, andg r →0 asr→∞ at some specified rate. LetX 1 have a probability density functionf. It is then established that for every realx, the standard kernel type estimator based onX t (1≦tn) is, under some general regularity conditions, asymptotically normal and converges a.s. tof(x) asn→∞. Research was supported in part by the Air Force Office of Scientific Research Grant No. AFOSR-81-0058.  相似文献   

3.
We establish the consistency, asymptotic normality, and efficiency for estimators derived by minimizing the median of a loss function in a Bayesian context. We contrast this procedure with the behavior of two Frequentist procedures, the least median of squares (LMS) and the least trimmed squares (LTS) estimators, in regression problems. The LMS estimator is the Frequentist version of our estimator, and the LTS estimator approaches a median-based estimator as the trimming approaches 50% on each side. We argue that the Bayesian median-based method is a good tradeoff between the two Frequentist estimators.  相似文献   

4.
Asymptotic properties of the Whittle estimator are considered. The asymptotic efficiency in the minimax sense, as well as in the Bahadur sense, are proved. The asymptotic behavior of the Whittle estimator and the maximum likelihood estimator is compared.  相似文献   

5.
Recently, we proposed variants as a statistical model for treating ambiguity. If data are extracted from an object with a machine then it might not be able to give a unique safe answer due to ambiguity about the correct interpretation of the object. On the other hand, the machine is often able to produce a finite number of alternative feature sets (of the same object) that contain the desired one. We call these feature sets variants of the object. Data sets that contain variants may be analyzed by means of statistical methods and all chapters of multivariate analysis can be seen in the light of variants. In this communication, we focus on point estimation in the presence of variants and outliers. Besides robust parameter estimation, this task requires also selecting the regular objects and their valid feature sets (regular variants). We determine the mixed MAP-ML estimator for a model with spurious variants and outliers as well as estimators based on the integrated likelihood. We also prove asymptotic results which show that the estimators are nearly consistent.The problem of variant selection turns out to be computationally hard; therefore, we also design algorithms for efficient approximation. We finally demonstrate their efficacy with a simulated data set and a real data set from genetics.  相似文献   

6.
In the estimation of parametric models for stationary spatial or spatio-temporal data on a d-dimensional lattice, for d?2, the achievement of asymptotic efficiency under Gaussianity, and asymptotic normality more generally, with standard convergence rate, faces two obstacles. One is the “edge effect”, which worsens with increasing d. The other is the possible difficulty of computing a continuous-frequency form of Whittle estimate or a time domain Gaussian maximum likelihood estimate, due mainly to the Jacobian term. This is especially a problem in “multilateral” models, which are naturally expressed in terms of lagged values in both directions for one or more of the d dimensions. An extension of the discrete-frequency Whittle estimate from the time series literature deals conveniently with the computational problem, but when subjected to a standard device for avoiding the edge effect has disastrous asymptotic performance, along with finite sample numerical drawbacks, the objective function lacking a minimum-distance interpretation and losing any global convexity properties. We overcome these problems by first optimizing a standard, guaranteed non-negative, discrete-frequency, Whittle function, without edge-effect correction, providing an estimate with a slow convergence rate, then improving this by a sequence of computationally convenient approximate Newton iterations using a modified, almost-unbiased periodogram, the desired asymptotic properties being achieved after finitely many steps. The asymptotic regime allows increase in both directions of all d dimensions, with the central limit theorem established after re-ordering as a triangular array. However our work offers something new for “unilateral” models also. When the data are non-Gaussian, asymptotic variances of all parameter estimates may be affected, and we propose consistent, non-negative definite estimates of the asymptotic variance matrix.  相似文献   

7.
In this paper on developing shrinkage for spectral analysis of multivariate time series of high dimensionality, we propose a new nonparametric estimator of the spectral matrix with two appealing properties. First, compared to the traditional smoothed periodogram our shrinkage estimator has a smaller L2 risk. Second, the proposed shrinkage estimator is numerically more stable due to a smaller condition number. We use the concept of “Kolmogorov” asymptotics where simultaneously the sample size and the dimensionality tend to infinity, to show that the smoothed periodogram is not consistent and to derive the asymptotic properties of our regularized estimator. This estimator is shown to have asymptotically minimal risk among all linear combinations of the identity and the averaged periodogram matrix. Compared to existing work on shrinkage in the time domain, our results show that in the frequency domain it is necessary to take the size of the smoothing span as “effective sample size” into account. Furthermore, we perform extensive Monte Carlo studies showing the overwhelming gain in terms of lower L2 risk of our shrinkage estimator, even in situations of oversmoothing the periodogram by using a large smoothing span.  相似文献   

8.
We propose a parametric model for a bivariate stable Lévy process based on a Lévy copula as a dependence model. We estimate the parameters of the full bivariate model by maximum likelihood estimation. As an observation scheme we assume that we observe all jumps larger than some ε>0 and base our statistical analysis on the resulting compound Poisson process. We derive the Fisher information matrix and prove asymptotic normality of all estimates when the truncation point ε→0. A simulation study investigates the loss of efficiency because of the truncation.  相似文献   

9.
The asymptotic distribution of the quasi-maximum likelihood (QML) estimator is established for generalized autoregressive conditional heteroskedastic (GARCH) processes, when the true parameter may have zero coefficients. This asymptotic distribution is the projection of a normal vector distribution onto a convex cone. The results are derived under mild conditions. For an important subclass of models, no moment condition is imposed on the GARCH process. The main practical implication of these results concerns the estimation of overidentified GARCH models.  相似文献   

10.
Edgeworth expansions for the distribution of a sequential least squares estimator in the random coefficient autoregressive (RCA) model are derived. The regenerative approach to second-order asymptotic analysis of Markov-type statistical models is developed.  相似文献   

11.
We consider the problem of estimation of the parameters in Generalized Linear Models (GLM) with binary data when it is suspected that the parameter vector obeys some exact linear restrictions which are linearly independent with some degree of uncertainty. Based on minimum -divergence estimation (ME), we consider some estimators for the parameters of the GLM: Unrestricted ME, restricted ME, Preliminary ME, Shrinkage ME, Shrinkage preliminary ME, James–Stein ME, Positive-part of Stein-Rule ME and Modified preliminary ME. Asymptotic bias as well as risk with a quadratic loss function are studied under contiguous alternative hypotheses. Some discussion about dominance among the estimators studied is presented. Finally, a simulation study is carried out.  相似文献   

12.
MOMENT ESTIMATION FOR MULTIVARIATE EXTREME VALUE DISTRIBUTION   总被引:8,自引:0,他引:8  
Moment estimation for multivariate extreme value distribution is described in this paper. Asymptotic covariance matrix of the estimators is given. The relative efficiencies of moment estimators as compared with the maximum likelihood and the stepwise estimators are computed. We show that when there is strong dependence between the variates, the generalized variance of moment estimators is much lower than the stepwise estimators. It becomes more obvious when the dimension increases.  相似文献   

13.
In this article, we consider a model check test for linear processes with infinite variance. As a test statistic, we employ the portmanteau test with trimmed residuals. It is shown that the limiting null distribution of the test is a chi-square distribution. Simulation results are provided for illustration.  相似文献   

14.
This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux (1993) [28], and Ma and Genton (2000) [23] to accommodate periodicity. These periodic robust functions are used in the Yule-Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers.  相似文献   

15.
Robust Bayesian analysis is concerned with the problem of making decisions about some future observation or an unknown parameter, when the prior distribution belongs to a class Γ instead of being specified exactly. In this paper, the problem of robust Bayesian prediction and estimation under a squared log error loss function is considered. We find the posterior regret Γ-minimax predictor and estimator in a general class of distributions. Furthermore, we construct the conditional Γ-minimax, most stable and least sensitive prediction and estimation in a gamma model. A prequential analysis is carried out by using a simulation study to compare these predictors.  相似文献   

16.
17.
The restricted maximum likelihood (REML) procedure is useful for inferences about variance components in mixed linear models. However, its extension to hierarchical generalized linear models (HGLMs) is often hampered by analytically intractable integrals. Numerical integration such as Gauss-Hermite quadrature (GHQ) is generally not recommended when the dimensionality of the integral is high. With binary data various extensions of the REML method have been suggested, but they have had unsatisfactory biases in estimation. In this paper we propose a statistically and computationally efficient REML procedure for the analysis of binary data, which is applicable over a wide class of models and design structures. We propose a bias-correction method for models such as binary matched pairs and discuss how the REML estimating equations for mixed linear models can be modified to implement more general models.  相似文献   

18.
Parametric models for tail copulas are being used for modeling tail dependence and maximum likelihood estimation is employed to estimate unknown parameters. However, two important questions seem unanswered in the literature: (1) What is the asymptotic distribution of the MLE and (2) how does one test the parametric model? In this paper, we answer these two questions in the case of a single parameter for ease of illustration. A simulation study is provided to investigate the finite sample performance of the proposed estimator and test.  相似文献   

19.
In this paper, we present a simple and direct approach in which supermartinagles are used to approximate the optimal stopping sets associated with the Bayesian sequential test for normal population means. Several conclusions are given. Project supported by the National Natural Science Foundation of China.  相似文献   

20.
Gaussian Markov random fields (GMRF) are important families of distributions for the modeling of spatial data and have been extensively used in different areas of spatial statistics such as disease mapping, image analysis and remote sensing. GMRFs have been used for the modeling of spatial data, both as models for the sampling distribution of the observed data and as models for the prior of latent processes/random effects; we consider mainly the former use of GMRFs. We study a large class of GMRF models that includes several models previously proposed in the literature. An objective Bayesian analysis is presented for the parameters of the above class of GMRFs, where explicit expressions for the Jeffreys (two versions) and reference priors are derived, and for each of these priors results on posterior propriety of the model parameters are established. We describe a simple MCMC algorithm for sampling from the posterior distribution of the model parameters, and study frequentist properties of the Bayesian inferences resulting from the use of these automatic priors. Finally, we illustrate the use of the proposed GMRF model and reference prior for studying the spatial variability of lip cancer cases in the districts of Scotland over the period 1975-1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号