共查询到20条相似文献,搜索用时 0 毫秒
1.
Esra Akdeniz Duran Hongchang Hu 《Journal of Computational and Applied Mathematics》2011,235(5):1418-1428
In this paper we consider the semiparametric regression model, y=Xβ+f+ε. Recently, Hu [11] proposed ridge regression estimator in a semiparametric regression model. We introduce a Liu-type (combined ridge-Stein) estimator (LTE) in a semiparametric regression model. Firstly, Liu-type estimators of both β and f are attained without a restrained design matrix. Secondly, the LTE estimator of β is compared with the two-step estimator in terms of the mean square error. We describe the almost unbiased Liu-type estimator in semiparametric regression models. The almost unbiased Liu-type estimator is compared with the Liu-type estimator in terms of the mean squared error matrix. A numerical example is provided to show the performance of the estimators. 相似文献
2.
A general approach for developing distribution free tests for general linear models based on simplicial depth is applied to multiple regression. The tests are based on the asymptotic distribution of the simplicial regression depth, which depends only on the distribution law of the vector product of regressor variables. Based on this formula, the spectral decomposition and thus the asymptotic distribution is derived for multiple regression through the origin and multiple regression with Cauchy distributed explanatory variables. The errors may be heteroscedastic and the concrete form of the error distribution does not need to be known. Moreover, the asymptotic distribution for multiple regression with intercept does not depend on the location and scale of the explanatory variables. A simulation study suggests that the tests can be applied also to normal distributed explanatory variables. An application on multiple regression for shape analysis of fishes demonstrates the applicability of the new tests and in particular their outlier robustness. 相似文献
3.
Christine H. Müller 《Journal of multivariate analysis》2005,95(1):153-181
We investigate depth notions for general models which are derived via the likelihood principle. We show that the so-called likelihood depth for regression in generalized linear models coincides with the regression depth of Rousseeuw and Hubert (J. Amer. Statist. Assoc. 94 (1999) 388) if the dependent observations are appropriately transformed. For deriving tests, the likelihood depth is extended to simplicial likelihood depth. The simplicial likelihood depth is always a U-statistic which is in some cases not degenerated. Since the U-statistic is degenerated in the most cases, we demonstrate that nevertheless the asymptotic distribution of the simplicial likelihood depth and thus asymptotic α-level tests for general types of hypotheses can be derived. The tests are distribution-free. We work out the method for linear and quadratic regression. 相似文献
4.
Spearman’s rank-correlation coefficient (also called Spearman’s rho) represents one of the best-known measures to quantify the degree of dependence between two random variables. As a copula-based dependence measure, it is invariant with respect to the distribution’s univariate marginal distribution functions. In this paper, we consider statistical tests for the hypothesis that all pairwise Spearman’s rank correlation coefficients in a multivariate random vector are equal. The tests are nonparametric and their asymptotic distributions are derived based on the asymptotic behavior of the empirical copula process. Only weak assumptions on the distribution function, such as continuity of the marginal distributions and continuous partial differentiability of the copula, are required for obtaining the results. A nonparametric bootstrap method is suggested for either estimating unknown parameters of the test statistics or for determining the associated critical values. We present a simulation study in order to investigate the power of the proposed tests. The results are compared to a classical parametric test for equal pairwise Pearson’s correlation coefficients in a multivariate random vector. The general setting also allows the derivation of a test for stochastic independence based on Spearman’s rho. 相似文献
5.
A bias-corrected technique for constructing the empirical likelihood ratio is used to study a semiparametric regression model with missing response data. We are interested in inference for the regression coefficients, the baseline function and the response mean. A class of empirical likelihood ratio functions for the parameters of interest is defined so that undersmoothing for estimating the baseline function is avoided. The existing data-driven algorithm is also valid for selecting an optimal bandwidth. Our approach is to directly calibrate the empirical log-likelihood ratio so that the resulting ratio is asymptotically chi-squared. Also, a class of estimators for the parameters of interest is constructed, their asymptotic distributions are obtained, and consistent estimators of asymptotic bias and variance are provided. Our results can be used to construct confidence intervals and bands for the parameters of interest. A simulation study is undertaken to compare the empirical likelihood with the normal approximation-based method in terms of coverage accuracies and average lengths of confidence intervals. An example for an AIDS clinical trial data set is used for illustrating our methods. 相似文献
6.
A weighted multivariate signed-rank test is introduced for an analysis of multivariate clustered data. Observations in different clusters may then get different weights. The test provides a robust and efficient alternative to normal theory based methods. Asymptotic theory is developed to find the approximate p-value as well as to calculate the limiting Pitman efficiency of the test. A conditionally distribution-free version of the test is also discussed. The finite-sample behavior of different versions of the test statistic is explored by simulations and the new test is compared to the unweighted and weighted versions of Hotelling’s T2 test and the multivariate spatial sign test introduced in [D. Larocque, J. Nevalainen, H. Oja, A weighted multivariate sign test for cluster-correlated data, Biometrika 94 (2007) 267-283]. Finally, a real data example is used to illustrate the theory. 相似文献
7.
In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model. 相似文献
8.
Michel Delecroix 《Journal of multivariate analysis》2003,86(2):213-226
Semiparametric single-index regression involves an unknown finite-dimensional parameter and an unknown (link) function. We consider estimation of the parameter via the pseudo-maximum likelihood method. For this purpose we estimate the conditional density of the response given a candidate index and maximize the obtained likelihood. We show that this technique of adaptation yields an asymptotically efficient estimator: it has minimal variance among all estimators. 相似文献
9.
Global depth, tangent depth and simplicial depths for classical and orthogonal regression are compared in examples, and properties that are useful for calculations are derived. The robustness of the maximum simplicial depth estimates is shown in examples. Algorithms for the calculation of depths for orthogonal regression are proposed, and tests for multiple regression are transferred to orthogonal regression. These tests are distribution free in the case of bivariate observations. For a particular test problem, the powers of tests that are based on simplicial depth and tangent depth are compared by simulations. 相似文献
10.
A contribution to multivariate L-moments: L-comoment matrices 总被引:1,自引:0,他引:1
Multivariate statistical analysis relies heavily on moment assumptions of second order and higher. With increasing interest in heavy-tailed distributions, however, it is desirable to describe dispersion, skewness, and kurtosis under merely first order moment assumptions. Here, the univariate L-moments of Hosking [L-moments: analysis and estimation of distributions using linear combinations of order statistics, J. Roy. Statist. Soc. Ser. B 52 (1990) 105-124] are extended to “L-comoments” analogous to covariance. For certain models, the second order case yields correlational analysis coherent with classical correlation but also meaningful under just first moment assumptions. We develop properties and estimators for L-comoments, illustrate for several multivariate models, examine behavior of sample multivariate L-moments with heavy-tailed data, and discuss applications to financial risk analysis and regional frequency analysis. 相似文献
11.
K. Benhenni 《Journal of multivariate analysis》2010,101(2):476-490
We consider the estimation of the regression operator r in the functional model: Y=r(x)+ε, where the explanatory variable x is of functional fixed-design type, the response Y is a real random variable and the error process ε is a second order stationary process. We construct the kernel type estimate of r from functional data curves and correlated errors. Then we study their performances in terms of the mean square convergence and the convergence in probability. In particular, we consider the cases of short and long range error processes. When the errors are negatively correlated or come from a short memory process, the asymptotic normality of this estimate is derived. Finally, some simulation studies are conducted for a fractional autoregressive integrated moving average and for an Ornstein-Uhlenbeck error processes. 相似文献
12.
Item nonresponse occurs frequently in sample surveys and other applications. Imputation is commonly used to fill in the missing item values in a random sample {Yi;i=1,…,n}. Fractional linear regression imputation, based on the model with independent zero mean errors ?i, is used to create one or more imputed values in the data file for each missing item Yi, where {Xi,i=1,…,n}, is observed completely. Asymptotic normality of the imputed estimators of the mean μ=E(Y), distribution function θ=F(y) for a given y, and qth quantile θq=F-1(q),0<q<1 is established, assuming that Y is missing at random (MAR) given X. This result is used to obtain normal approximation (NA)-based confidence intervals on μ,θ and θq. In the case of θq, a Bahadur-type representation and Woodruff-type confidence intervals are also obtained. Empirical likelihood (EL) ratios are also obtained and shown to be asymptotically scaled variables. This result is used to obtain asymptotically correct EL-based confidence intervals on μ,θ and θq. Results of a simulation study on the finite sample performance of NA-based and EL-based confidence intervals are reported. 相似文献
13.
Thresholding projection estimators in functional linear models 总被引:1,自引:0,他引:1
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows us to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits us to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove that these estimators are minimax and rates of convergence are given for some particular cases. 相似文献
14.
Jinho Park 《Journal of multivariate analysis》2004,89(1):70-86
In this paper we consider nonparametric regression with left-truncated and right-censored data. An estimator of the regression function is developed when censoring and truncation are independent of covariates and the response. The estimation is based on the product limit estimator of the response variable. Under certain conditions, the L2 rate of convergence of the estimated regression function is obtained when tensor products of B-splines are used. 相似文献
15.
The empirical likelihood method is especially useful for constructing confidence intervals or regions of parameters of interest. Yet, the technique cannot be directly applied to partially linear single-index models for longitudinal data due to the within-subject correlation. In this paper, a bias-corrected block empirical likelihood (BCBEL) method is suggested to study the models by accounting for the within-subject correlation. BCBEL shares some desired features: unlike any normal approximation based method for confidence region, the estimation of parameters with the iterative algorithm is avoided and a consistent estimator of the asymptotic covariance matrix is not needed. Because of bias correction, the BCBEL ratio is asymptotically chi-squared, and hence it can be directly used to construct confidence regions of the parameters without any extra Monte Carlo approximation that is needed when bias correction is not applied. The proposed method can naturally be applied to deal with pure single-index models and partially linear models for longitudinal data. Some simulation studies are carried out and an example in epidemiology is given for illustration. 相似文献
16.
Consider the model Y=m(X)+ε, where m(⋅)=med(Y|⋅) is unknown but smooth. It is often assumed that ε and X are independent. However, in practice this assumption is violated in many cases. In this paper we propose modeling the dependence between ε and X by means of a copula model, i.e. (ε,X)∼Cθ(Fε(⋅),FX(⋅)), where Cθ is a copula function depending on an unknown parameter θ, and Fε and FX are the marginals of ε and X. Since many parametric copula families contain the independent copula as a special case, the so-obtained regression model is more flexible than the ‘classical’ regression model.We estimate the parameter θ via a pseudo-likelihood method and prove the asymptotic normality of the estimator, based on delicate empirical process theory. We also study the estimation of the conditional distribution of Y given X. The procedure is illustrated by means of a simulation study, and the method is applied to data on food expenditures in households. 相似文献
17.
In this paper, we prove some limit theorems for the Fourier estimator of multivariate volatility proposed by Malliavin and Mancino (2002, 2009) [14] and [15]. In a general framework of discrete time observations we establish the convergence of the estimator and some associated central limit theorems with explicit asymptotic variance. In particular, our results show that this estimator is consistent for synchronous data, but possibly biased for non-synchronous observations. Moreover, from our general central limit theorem, we deduce that the estimator can be efficient in the case of a synchronous regular sampling. In the non-synchronous sampling case, the expression of the asymptotic variance is in general less tractable. We study this case more precisely through the example of an alternate sampling. 相似文献
18.
We consider a recurrent Markov process which is an Itô semi-martingale. The Lévy kernel describes the law of its jumps. Based on observations X0,XΔ,…,XnΔ, we construct an estimator for the Lévy kernel’s density. We prove its consistency (as nΔ→∞ and Δ→0) and a central limit theorem. In the positive recurrent case, our estimator is asymptotically normal; in the null recurrent case, it is asymptotically mixed normal. Our estimator’s rate of convergence equals the non-parametric minimax rate of smooth density estimation. The asymptotic bias and variance are analogous to those of the classical Nadaraya–Watson estimator for conditional densities. Asymptotic confidence intervals are provided. 相似文献
19.
Conditions for the existence of strictly stationary multivariate GARCH processes in the so-called BEKK parametrisation, which is the most general form of multivariate GARCH processes typically used in applications, and for their geometric ergodicity are obtained. The conditions are that the driving noise is absolutely continuous with respect to the Lebesgue measure and zero is in the interior of its support and that a certain matrix built from the GARCH coefficients has spectral radius smaller than one.To establish the results, semi-polynomial Markov chains are defined and analysed using algebraic geometry. 相似文献
20.
Qihua Wang 《Journal of multivariate analysis》2006,97(5):1142-1161
This paper develops estimation approaches for nonparametric regression analysis with surrogate data and validation sampling when response variables are measured with errors. Without assuming any error model structure between the true responses and the surrogate variables, a regression calibration kernel regression estimate is defined with the help of validation data. The proposed estimator is proved to be asymptotically normal and the convergence rate is also derived. A simulation study is conducted to compare the proposed estimators with the standard Nadaraya-Watson estimators with the true observations in the validation data set and the complete observations, respectively. The Nadaraya-Watson estimator with the complete observations can serve as a gold standard, even though it is practically unachievable because of the measurement errors. 相似文献