首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Densities ρ, speeds of sound u, viscosities η and refractive indices nD of binary mixtures of octan-2-ol with benzene, chlorobenzene and bromobenzene have been measured over the entire range of composition at 298.15 and 303.15 K and atmospheric pressure. From the experimental data, excess molar volumes VE, isentropic compressibilities κS, excess isentropic compressibilities κSE, and deviations of speeds of sound uD, have been calculated at 298.15 and 303.15 K. These excess functions have been fitted to the Redlich-Kister polynomial equation. The viscosity data have been correlated using Kendall-Monroe, Grunberg-Nissan, Tamura-Kurata, Hind-Mclaughlin Ubbelohde and Katti-Chaudhary viscosity models, and McAllister's three-body interaction model at different temperatures.  相似文献   

2.
Densities, viscosities, and ultrasonic velocities of the binary mixtures of acetophenone with ethyl butyrate were measured over the entire mole fractions at 303.15, 313.15, and 323.15 K. From these experimental results, excess molar volume V E , viscosity deviation Δη, deviations in isentropic compressibility Δκ s , excess intermolecular free length ΔL f , and excess Gibbs free energy ΔG* E were calculated. The viscosity values were fit to the models of Krishnan–Laddha and McAllister. The thermophysical properties under study were fit to the Jouyban–Acree model. The excess values were correlated using Redlich–Kister polynomial equation to obtain their coefficients and standard deviations. It was found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution.  相似文献   

3.
Densities and viscosities of ternary mixtures of 2-pyrrolidone + 1,2-propanediol + water and corresponding binary mixtures of 1,2-propanediol + water, 2-pyrrolidone + water and 2-pyrrolidone + 1,2-propanediol have been measured over the whole composition range at 313.15 K. From the obtained data, the excess molar volumes (VE), the deviations in viscosity (Δη) and the excess Gibbs free energy of activation (ΔG?E) have been calculated. The VE, Δη and ΔG?E results were correlated and fitted by the Redlich–Kister equation for binary mixtures and by the Cibulka equation for ternary mixtures, as a function of mole fraction. Several predictive empirical relations were applied to predict the excess molar volumes of ternary mixtures from the binary mixing data.  相似文献   

4.
The densities ρ, speed of sound u, data of o-toluidine (i) + tetrahydropyran (j) + N,N-dimethylformamide (k) and its {tetrahydropyran (j) + N,N-dimethylformamide (k); o-toluidine (i) + N,N-dimethylformamide (k)} binaries have been measured as a function of composition at 298.15, 303.15 and 308.15 K. The excess molar enthalpies, HE data of same set of binary mixtures have also been measured over entire composition at 308.15 K. The densities and speeds of sound data of binary and ternary mixtures have been utilized to determine their excess molar volumes, VE and excess isentropic compressibilities, κSE. The observed thermodynamic properties of binary and ternary mixtures have been analyzed in terms of Graph theory. It has been observed that Graph theory correctly predicts the sign as well as magnitude of thermodynamic properties.  相似文献   

5.
Densities ρ, viscosities η, and refractive indices nD, of the binary and ternary mixtures formed by cyclohexanone + N,N-dimethylacetamide + N,N-diethylethanolamine were measured at (298.15, 308.15, and 318.15) K for the liquid region and at ambient pressure for the whole composition ranges. The excess molar volumes VmE, viscosity deviations Δη, and refractive index deviations ΔnD, were calculated from experimental densities and refractive indices. The excess molar volumes are positive over the mole fraction range for binary mixtures of cyclohexanone(1) + N,N-dimethylacetamide (2) and N,N-dimethylactamide (2) + N,N-diethylethanolamine (3) and increase with increasing temperatures from (298.15 to 318.15) K. The excess molar volumes of cyclohexanone (1) + N,N-diethylethanolamine (3) are S-shaped dependence on composition with negative values in the N,N-diethylethanolamine rich-region and positive values at the opposite extreme and increase with increasing temperatures from (298.15 to 318.15) K. The excess molar volumes are positive over the whole mole fraction ranges for the ternary mixtures at all temperatures. Viscosity deviations are negative over the mole fraction range for all binary and ternary mixtures and decrease with increasing temperatures from (298.15 to 318.15) K. Refractive index deviations are negative over the mole fraction range for all binary and ternary mixtures and increase with increasing temperatures from (298.15 to 318.15) K. The experimental data of constitute were correlated as a function of the mole fraction by using the Redlich–Kister equation for binary and , Cibulka, Jasinski and Malanowski , Singe et al., Pintos et al., Calvo et al., Kohler, and Jacob–Fitzner for ternary mixture, respectively. McAllister's three body, Hind, and Nissan–Grunberg models were used for correlating the kinematic and dynamic viscosity of binary mixtures. The experimental data of the constitute binaries are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

6.
《Journal of Molecular Liquids》2006,123(2-3):146-151
The excess molar volumes (VmE) and viscosities (η) for binary mixtures of dipropylene glycol tert-butyl ether with methanol, 1-propanol, 1-pentanol, and 1-heptanol and viscosities of dipropylene glycol monomethyl ether and dipropylene glycol monobutyl ether with methanol, 1-pentanol, and 1-heptanol have been reported at 298.15 K. The VmE are negative for the mixtures investigated. Sign and magnitude of VmE and viscosity deviations were used to analyze the mixing behavior of the components.  相似文献   

7.
Densities ρ, dynamic viscosities η, of the ternary mixture (diethylcarbonate + p-chloroacetophenone + 1-hexanol) and the involved binary mixtures (diethylcarbonate + p-chloroacetophenone), (diethylcarbonate + 1-hexanol), and (p-chloroacetophenone + 1-hexanol) have been measured over the whole composition range at 303.15 K for the liquid region and at ambient pressure. The data obtained are used to calculate excess molar volumes VmE, excess partial molar volumes V¯m,iE, limiting excess partial molar volumes V¯m,iE,∞, and viscosity deviations Δη, of the binary and ternary mixtures. The data of excess molar volumes of the binary systems were fitted to the Redlich–Kister equation while for the ternary system the Cibulka equation was used. The McAllister's four body, and Kalidas and Laddha interaction models are used to correlate the kinematic viscosities of binary and ternary mixtures, respectively, to determine the fitting parameters and the standard deviations. The experimental data of the constitute binaries and ternary are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

8.
Densities and speeds of sound have been measured for the binary mixtures of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] with ethylene glycol monoethyl ether (EGMEE), diethylene glycol monoethyl ether (Di-EGMEE), triethylene glycol monoethyl ether (Tri-EGMEE) over the whole composition range at atmospheric pressure. Experimental densities have been used to estimate excess molar volumes, VE. Changes in isentropic compressibility, Δκs have been estimated by using experimental speed of sound and density values. Excess properties were fitted to the Redlich-Kister polynomial equation to obtain the binary coefficients and the standard errors. The molecular scale interactions between ionic liquid and alkoxyalkanols have been investigated through 1H NMR spectroscopy. NMR chemical shifts for hydroxyl group of alkoxyalkanols and their deviations show hydrogen bonding interactions of varying strengths between ionic liquid and alkoxyalkanol in their binary mixtures.  相似文献   

9.
The experimental densities (ρ), dynamic viscosities (η), speeds of sound (υ) and relative permittivities (εr) of thirty six binary mixtures of esters (methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate) + organic solvents (n-hexane, benzene, toluene, o-, m-, p- xylenes), + halogenated benzene (chloro-, bromobenzene), + nitrobenzene have been measured over the complete composition range at atmospheric pressure and temperatures (298.15 to 313.15 K). The excess molar volumes, VmE, excess isentropic compressibilities, κsE, deviations in relative permittivities, δεr have been calculated and fitted to Redlisch–Kister type equation. The dynamic and kinematic viscosities have been correlated through Grunberg–Nissan and MacAllister equations. The qualitative analysis of various functions revealed that i.) esters lose their dipolar association in presence of inert and unlike n-hexane, ii.) specific but weaker nπ type interactions predominate in binary mixtures of esters + aromatic organic solvents and iii.) weak electron donor–acceptor complexes predominate in the mixtures of esters with halogenated and nitrated benzene.  相似文献   

10.
Densities and viscosities have been measured as a function of composition for the binary liquid mixture of diethylene glycol monomethyl ether CH3O(CH2)2O(CH2)2OH + water at T = (293.15, 303.15, 313.15, 323.15, 333.15) K under atmospheric pressure. Densities were determined using a capillary pycnometer. Viscosities were measured with Ubbelohde capillary viscometer. From the experimental data, the excess molar volumes VE, and viscosity deviations δη, and the excess energies of activation for viscous flow ΔG*E were calculated. These data have been correlated by the Redlich–Kister type equations to obtain their coefficients and standard deviations. The results suggest that molecular interaction between diethylene glycol monomethyl ether and water is strong.  相似文献   

11.
12.
The excess molar volume VmE, viscosity deviation Δη, and excess Gibbs energy of activation ΔG?E of viscous flow have been investigated from the density ρ and viscosity η measurements of binary mixtures of methanol with n-butylamine and di-n-butylamine over the entire range of mole fractions at 303.15, 313.15, and 323.15 K. The systems studied exhibit very strong cross association through strong O–H…N bonding between –OH and –NH– groups. As a consequence of this strong intermolecular association, both the systems have very large negative VmE and positive Δη and ΔG?E over entire range of composition and at all the temperatures of investigation. VmE of the studied mixtures is consistently described by the ERAS model. The values of cross association constants KAB illustrate that cross-associates are more pronounced in primary amine mixtures than that in secondary amine.  相似文献   

13.
Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N,N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb’s free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties.  相似文献   

14.
The values of density, viscosity and speed of sound for the binary liquid mixture of Benzaldehyde with Benzene were measured over the entire range of composition at 303.15, 308.15, and 313.15 K. These values are used to calculate the excess molar volume (V E), deviation in viscosity (Δη), deviation in speed of sound (ΔU), deviation in isentropic compressibility (Δβ s ), excess internal pressure (Δπ), excess intermolecular free length (ΔL f ), excess free volume (V E f ) and excess acoustic impedance (ΔZ). McAllister’s three-body interaction model is used for correlating Kinematic Viscosity of binary mixtures. The excess values were correlated using the Redlich–Kister polynomial equation to obtain their coefficients and standard deviations. The thermophysical properties (density, viscosity, and speed of sound) under the study were fit to the Jouyban–Acree model.  相似文献   

15.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

16.
Densities (ρ) and speeds of sound (u) for the binary mixtures of 1-hexanol with n-hexane, n-octane and n-decane have been measured over the entire composition range at 298.15, 303.15 and 308.15 K. The dynamic viscosities (η) for these systems have been measured at 298.15 K. From experimental data, excess molar volumes (VmE), molar isentropic compressibility (Ks,m), excess molar isentropic compressibility (Ks,mE), deviation in speed of sound (uD) from their ideal values (uid) in an ideal mixture, and excess free volumes (VfE) have been calculated. The excess functions have also been correlated with the Redlich–Kister polynomial equation. The viscosity data have been analysed in terms of some semi-empirical equations. The theoretical values of speed of sound (u) and isentropic compressibility (κS) have also been estimated using the Prigogine–Flory–Patterson (PFP) theory with the van der Waals (vdW) potential energy model and the results have been compared with experimental values. The effect of chain-length of n-alkanes as well as the temperature on the excess properties has also been studied.  相似文献   

17.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

18.
Optical properties of solid methane (CH4) were studied at high pressure and room temperature using a diamond anvil cell. Reflectivity and transmission measurements were used to measure the refractive index to 288 GPa. Fabry-Perot interferometery was used to measure the sample thickness to 172 GPa. This data was fitted to the derived expression of thickness vs. pressure that was then used to calculate the thickness to 288 GPa. This in turn was combined with optical absorption experiments to obtain the absorption coefficient and hence the extinction coefficient k*. From combined reflection and absorption experiments the refractive index n=ns+ik* was obtained. The index of refraction and the ratio of molar refraction to molar volume showed a large increase between 208 and 288 GPa. This behavior indicated that a phase transformation of insulator-semiconductor might have occurred in solid CH4 by 288 GPa.  相似文献   

19.
To understand the molecular interactions between newly synthesized ammonium ionic liquids (ILs) and highly polar solvent dimethylsulfoxide (DMSO), precise measurements such as densities (ρ), ultrasonic sound velocities (u) and viscosities (η) have been performed over the whole composition range at temperature ranging from 298.15 to 308.15 K and at atmospheric pressure. The ILs investigated in the present study included diethyl ammonium acetate ([Et2NH][CH3COO], DEAA) and triethyl ammonium acetate ([Et3NH][CH3COO], TEAA). Further, to gain some insight into the nature of molecular interactions in these mixed solvents, we predicted the excess molar volume (VE), the deviation in isentropic compressibilities (ΔKs) and deviation in viscosity (Δη) as a function of the concentration of IL using the measured properties of ρ, u and η, respectively. Redlich-Kister polynomial was used to correlate the results. The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMSO molecules and their structural factors.  相似文献   

20.
The use of photorefractive spatial solitons in the field of telecommunication is attractive, because they enable the realization of a variety of all-optical switching and coupling devices. We suggest a new design for a switch with one input and N outputs for infrared light in the telecommunication range (1520-1630 nm). The important refractive index n0 and its modulation Δn of our strontium-barium-niobate-crystal (SBN) in the infrared wavelength region is measured to be n0 = 2.29 and Δn = 1.9 × 10−4. With these results the experimental observations show a good agreement to the theoretical predictions. The experimentally realization of a 1 × 8 switch demonstrates the potential of this technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号