首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Stability in aqueous solution of some complexes of heavy metals with diaza-polyoxamacrocyclic ligands Stability of metal complexes (Mn+ = Cu2+, Ni2+, Co2+, Zn2+, Pb2+, Ag+ and Cd2+) with five diaza-polyoxamacrocycles (L = [2.1.1], [2.2.1], [2.2.2], [2.1] and [2.2] ) have been determined at 25°, in 0.1 M Et4N+ClO aqueous solutions, by means of potentiometric titrations. All cations form MLn+ complexes; Cu2+ also forms the MHL(n+1)+ protonated species with both [2.2.1] and [2.1.1] ligands. The stability of these complexes has been discussed in terms of structure and by considering the ionic radii of the cations together with the radii of the macrocyclic cavities. Different behaviour is observed between some of these complexes and the well known alkali and alkaline-earth cryptates, partly due to the more covalent nature of bonds formed by the investigated cations and the donor sites of the ligands. The effect of the substitution of two oxygen by two sulfur atoms in the pentadentate ligand [2.1] on the stability of the complexes is reported.  相似文献   

2.
The difference in steric strain between the oxidized and the reduced forms of tetraaminecopper complexes is correlated with the corresponding reduction potentials. The experimentally determined data considered range from ?0.54 to ?0.04 V (vs. NHE) in aqueous solution and from ?0.35 to ?0.08 V (vs. NHE) in MeCN. The observed and/or computed geometries of the tetraaminecopper(II) complexes are distorted octahedral or square-pyramidal (4 + 2 or 4+1) with (distorted) square-planar CuN4 chromophores (CuII? N = 1.99–2.06 Å; Cu? O ≈ 2.5 Å; Cu? O ≈ 2.3 Å), those of the tetraaminecopper(I) complexes are (distorted) tetrahedral (four-coordinate; CuI? N = 2.12–2.26 Å; tetrahedral twist angle ?? = 30–90°). The reduction potentials of CuII/I couples with primary-amine ligands and those with macrocyclic secondary-amine ligands were correlated separately with the corresponding strain energies, leading to slopes of 70 and 61 kJ mol?1 V?1, with correlation coefficients of 0.89 and 0.91, respectively. The approximations of the model (entropy, solvation, electronic factors) and the limits of applicability are discussed in detail and in relation to other approaches to compute reduction potentials of transition-metal compounds.  相似文献   

3.
Using a new mathematical treatment, the nature and stability constants of the simple and mixed complex-species of copper(II) with hydroxyde and ammonia as ligands have been determined. The solubility curves of CuO in heterogeneous equilibrium have been identified in function of pH only and in function of pH and pNH3tot at 25° and unit ionic strength (NaClO4). The predominent species in the relatively dilute system limited by the ionic strength are [Cu2+], [Cu(OH)2], [Cu(OH)], [Cu(OH)], [Cu(NH3)], [Cu(NH3)], [Cu(NH3)], [Cu(NH3) (OH)+], [Cu(NH3)3(OH)+] and [Cu(NH3)2(OH)2].  相似文献   

4.
A series of tetra-N-alkylated 1,4,8,11-tetraazacyclotetradecanes have been synthesized and their complexation potential towards Ni2+ and Cu2+ studied. In the case of sterically demanding alkyl substituents, such as i-Pr, PhCH2, or 2-MeC6H4CH2, no metal complexes are formed, whereas for substituents such as Me, Et, and Pr, the metal ion is incorporated into the macrocycle. The spectroscopic properties of the Ni2+ and Cu2+ complexes in aqueous solution indicate that, depending on the sterical hindrance of the N-substituents, the complexes are either square planar or pentacoordinated. All these Ni2+ and Cu2+ complexes react with N to give ternary species, the stability of which have been determined by spectrophotometric titrations. The tendency to bind N decreases with increasing steric hindrance of the alkyl substituents. The X-ray studies of the Ni2+ complex with the macrocycle 11 , substituted by two Me and two Pr groups, and that of the Cu2+ complex with the tetraethyl derivative 8 show that in the solid state, the metal ions exhibit square planar coordination with a small distortion towards tetrahedral geometry.  相似文献   

5.
Protonation and Cu(II) complexation equilibria of L -phenyhilaninamide, N2-methyl-L-phenylalaninamide, N2, N2-dimethyl-L-phenylalaninamide, L -valinamide, and L -prolinamide have been studied by potentiometry in aqueous solution. The formation constants of the species observed, CuL2+, CuL, CuLH, CuL2H and CuL2H?2, are discussed in relation to the structures of the ligands. Possible structures of bisamidato complexes are proposed on the ground of VIS and CD spectra. Since Cu(II) complexes of the present ligands (pH range 6–8) perform chiral resolution of dansyl- and unmodified amino acids in HPLC (reversed phase), it is relevant for the investigation of the resolution mechanism to know which are the species potentially involved in the recognition process.  相似文献   

6.
The kinetics of O2-uptake of five-coordinated Co2+/tren complexes (tren = 2,2′, 2″-tris(2-aminoethyl)amine) have been studied extensively. The kinetics of formation of (tren)Co(O2, OH)Co(tren)3+ exhibits two steps. The rate law of O2-addition, the first step, was of the form: rate = (k[H+] + kKa)/([H+] + Ka) [Co(tren)2+][O2]. Second-order rate constants k = 220 ± 19 M ?1s?1 and k = 1.8 ± .035 · 103M ?1s?1 agreed well from O2-uptake and (stopped-flow) spectrophotometric measurements. The protonation constant of the hydroxo complex obtained by equlibrium measurements (spectrophotometric and by pH-titration) in anaerobic conditions (pKa = 10.03) agreed well with that derived from kinetic data (p Ka = 9.93); k and k are about a factor 100 smaller than those for the pseudooctahedral Co(trien) (H2O). This and the fact that several other Co(II) complexes with five-coordinated geometry do not exhibit oxygen affinity led to the proposal that the oxygenation mechanism for Co2+/tren complexes involves fast preequilibria between Co(tren) (H2O)2+ and Co(tren) (H2O) and only the latter is assumed to be reactive. The enhanced rate at high pH is explained by rate determining H2O-exchange in the O2-addition step and the ability of coordinated OH? to labilize the neighbouring H2O. This mechanism is furthermore supported by the formation of one kinetically preferred isomer of the peroxo-bridged dicobalt(III) complex (O2 cis to the tertiary N-atom) and the large negative activation entropy (?30 eu). The second step is the intramolecular bridging reaction: is independent of [Co(tren)2+] and [O2] but exhibits a pH-dependence of the form k3 = k3[H + ]/(Ka + [H+]); k?3 ( = 5 · 10?5 s?1) was determined independently and from the two rate constants the equilibrium constant was calculated as ≈ 105. The ligand combination as in Co(tren)2+ was shown to provide an excellent balance to form a reversible oxygen carrier; possible reasons for this are discussed.  相似文献   

7.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

8.
The complexation properties of the open-chain N2S2 ligands 1–4 are described and compared to those of analogous N2S2 macrocycles 5–7 . With Cu2+, the open-chain ligands give complexes with the stoichiometry CuL2+ and CuLOH+, the stabilities and absorption spectra of which have been determined. The ligand field exerted by these ligands is relatively constant and independent of the length of the chain. With Cu+, the species CuLH, CuLH2+, and CuL+ were identified and their stabilities measured. The redox potentials calculated from the equilibrium constants and measured by cyclic voltammetry agree and lie between 250 and 280 mV against SHE. The comparison between open-chain and cyclic ligands shows that (1) a macrocyclic effect is found for Cu2+ but not for Cu+, (2) the ligand-field strength is very different for the two types of ligands, and (3) the redox potentials span a larger interval for the macrocyclic than for the open-chain complexes.  相似文献   

9.
The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, (in part) Zn2+, or Cd2+ and (phosphonylmethoxy)ethane (PME2?) or 9?[2?(phosphonylmethoxy)ethyl]adenine (PMEA2?) were determined by potentiometric pH titration in aqueous solution (I = 0.1M , NaNO3; 25°). The experimental conditions were carefully selected such that self-association of the adenine derivative PMEA and of its complexes was negligibly small; i.e., it was made certain that the properties of the monomeric [M(PMEA)] complexes were studied. Recent measurements with simple phosphate monoesters, R–MP2– (where R is a non-coordinating residue; S. S. Massoud, H. Sigel, Inorg. Chem. 1988 , 27, 1447), were used to show that analogously simple phosphonates (R? PO) – we studied now the complexes of methyl phosphonate and ethyl phosphonate – fit on the same log K/logK vs. pK/ pK straight-line plots. With these reference lines, it could be demonstrated that for all the [M(PME)] complexes with the mentioned metal ions an increased complex stability is measured; i.e., a stability higher than that expected for a sole phosphonate coordination of the metal ion. This increased stability is attributed to the formation of five-membered chelates involving the ether oxygen present in the ? O? CH2? PO residue of PME2? (and PMEA2?); the formation degree of the five-membered [M(PME)] chelates varies between ca. 15 and 40% for the alkaline earth ions and ca. 35 to 65% for 3d ions and Zn2+ or Cd2+. Interestingly, for the [M(PMEA)] complexes within the error limits exactly the same observations are made indicating that the same five-membered chelates are formed, and that the adenine residue has no influence on the stability of these complexes, with the exception of those with Ni2+ and Cu2+. For these two metal ions, an additional stability increase is observed which has to be attributed to a metal ion-adenine interaction giving thus rise to equilibria between three different [M(PMEA)] isomers. These equilibria are analyzed, and for [Cu(PMEA)] it is calculated that 17(±3)% exist as an isomer with a sole Cu2+-phosphonate coordination, 34(±10)% form the mentioned five-membered chelate involving the ether oxygen, and the remaining 49(±10)% are due to an isomer containing also a Cu2+-adenine interaction. Based on various arguments, it is suggested that this latter isomer contains two chelate rings which result from a metal-ion coordination to the phosphonate group, the ether oxygen, and to N(3) of the adenine residue. For [Ni(PMEA)], the isomer with a Ni2+-adenine interaction is formed to only 22(±13)%; for [Cd(PMEA)] and the other [M(PMEA)] complexes if at all, only traces of such an isomer are occurring. In addition, the [M(PMEA)] complexes may be protonated leading to [M(H·PMEA)]+ species in which the proton is mainly at the phosphonate group, while the metal ion is bound in an adenosine-type fashion to the nucleic base residue. Finally, the properties of [M(PMEA)] and [M(AMP)] complexes are compared, and in this connection it should be emphasized that the ether oxygen which influences so much the stability and structure of the [M(PMEA)] complexes in solution is also crucial for the antiviral properties of PMEA.  相似文献   

10.
The interaction of solvents and of unidentate ligands such as N, SCN?, OCN? and OH? with the Co2+-, Ni2+ and Cu2+-complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC) have been studied by Spectrophotometric and calorimetric techniques. The spectra in different solvents (Table 2) show that the Ni2+- and probably also the Cu2+-complex with TMC exist as square planar or pentacoordinate species or as a mixture of both, depending on the donor properties of the solvent. The [Co(TMC)]2+-complex is pentacoordinate in all the solvents studied. Ternary complexes [M(TMC)X]n+ are also formed by the unidentate ligands X = N, OCN?, OH?, F? and NH3 and their stability constants have been determined. Interesting is the high selectivity of [Ni(TMC)]2+ towards the addition of a further donor (Table 3). Only small ligands such as those listed above form stable adducts, whereas the larger ones such as imidazole or pyridine do not. This is a consequence of the special structure of the complex and of the trans-I-(RSRS)- conformation of the ligand in these complexes. Since the four methyl groups are all on the side of the macrocycle to which the additional unidentate ligand binds, steric interaction between the four methyl groups and the larger ligands prevents the formation of the adducts. The calorimetric measurements show that the stability of the complexes [M(TMC)X]n+ is due to both an enthalpic and entropic contribution which differ in their magnitude (Table 4). This indicates that several antagonistic factors are important in determining the overall stability.  相似文献   

11.
In the context of our studies on ruthenium(II) complexes containing polyazaheterocyclic ligands, we have determined the rate constants of quenching by molecular oxygen (kq) of the metal-to-ligand charge-transfer-excited state of a series of homoleptic [RuL3] complexes (where L stands for 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 2,2′-bipyrazine (bpz), 4,7-diphenyl-1,10-phenanthroline (dip), diphenyl-1,10-phenanthroline-4,7-disulfonate (dpds), and 1, 10-phenanthroline-5-octadecanamide (poda)) in H2O and in MeOH. These compounds are singlet-oxygen (O2(1Δg)) sensitizers, and quantum yields of singlet-oxygen production (ΨΔ) in both solvents are also reported. Values of kq and ΨΔ depend on the nature of the ligand L and on the solvent, ΨΔ values showing a large range of variation (0.2 to 1.0). In MeOH, the only pathway for quenching of the excited [RuL3] complexes by molecular oxygen is energy transfer: the fraction of quenched excited states yielding singlet oxygen (?) is unity for all compounds in the series investigated. Changing from MeOH to H2O has several remarkable effects: higher kq and lower ΨΔ values are observed; ? drops to ca. 0.5 except for [Ru(bpz)3]2+. In fact, [Ru(bpz)3]2+ is by far the weakest reductant in the series and behaves differently from the other complexes, with lowest kq and ΨΔ values and a ? equal to 1 in both solvents. Results are interpreted on the basis of the role played by charge-transfer interactions between the sensitizer excited state and molecular oxygen in the quenching mechanism. RuII Complexes based on the 4,7-diphenyl-1, 10-phenanthroline (dip) ligand are very efficient and stable singlet-oxygen sensitizers with ΨΔ values close to unity in air-saturated MeOH.  相似文献   

12.
A series of nitrogen ligand (L)/copper complexes of the type [CuIL]+, [CuIIL(X)]+ and [CuIL2]+ (X = Cl, BF, acac, CH3COO and SO3CF) was studied in the gas phase by electrospray ionization mass spectrometry. The following ligands (L) were employed: 1,12‐diazaperylene (dap), 1,1′‐bisisoquinoline (bis), 2,2′‐bipyridine (bpy), 1,10‐phenanthroline (phen), 2,11‐disubstituted 1,12‐diazaperylenes (dap), 3,3′‐disubstituted 1,1′‐ bisisoquinoline (bis), 5,8‐dimethoxy‐substituted diazaperylene (meodap), 6,6′‐ dimethoxy‐substituted bisisoquinoline (meobis) and 2,9‐dimethyl‐1,10‐phenanthroline (dmphen). Collision‐induced decomposition measurements were applied to evaluate the relative stabilities of the different copper complexes. The influence of the spatial arrangement of the ligands, of the type of substituents and of the counter ion of the copper salts employed for the complexation was examined. Correlations were found between the binding constants of the [ML2]+ complexes in solution and the relative stabilities of the analogous complexes in the gas phase. Furthermore, complexation with the ligands 2,11‐dialkylated 1,12‐diazaperylenes [alkyl = ethyl (dedap) and isopropyl (dipdap)] was studied in the solvents CH3OH and CH3CN. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
(S,S)-N,N′ -Bis(aminoacyl)ethane- and (S,S)-N,N′ -bis(aminoacyl)propanediamines (AA-NN-2 and AA-NN-3, respectively, AA = alanine, phenylalanine, valine) were synthesized as the dihydrochlorides, and their complexes with Cu(II) studied potentiometrically. Since these ligands in the presence of Cu(II) are able to perform chiral resolution of D ,L -dansylamino acids in HPLC (reversed phase), in a certain pH range (6.5–8.5), it is important to know the equilibria existing between ligands and copper in aqueous solution. For AA-NN-2, four species, CuLH3+, CuL2+, Cu2L2H, and CuLH?2, were detected, whereas for AA-NN-3, only CuLH3+, CuL2+, and CuLH?2 were found. The aim is to find out which complexes may be involved in the recognition process.  相似文献   

14.
The Cu2+ and Ni2+ complexes of three reinforced tetraazamacrocycles, containing a piperazine subunit and one or two alkyl substituents at the other two N-atoms have been prepared and their structural properties studied. In solution, the Ni2+ complexes are square-planar and show no tendency to axially coordinate a solvent molecule or an N ion. In contrast, the Cu2+ complexes change their geometry depending upon the donor properties of the solvent, being square-planar in MeNO2 and pentacoordinate in DMF. They also easily react in aqueous solution with N to give ternary species with pentacoordinate geometry, the stabilities of which have been determined. In the solid state, the X-ray crystal structures of three Cu2+ complexes also show both geometrical arrangements, two having a square-planar, the other one a distorted square pyramidal geometry. The difference behavior of Ni2+ and Cu2+ stems from the fact that the structural change from square-planar to square-pyramidal can easily be accomplished for Cu2+, whereas, for Ni2+, it is accompanied by an electronic rearrangement from the low-spin to the high-spin configuration. The relatively rigid ligands cannot Adapt to the somewhat larger high-spin Ni2+ion.  相似文献   

15.
Rates of solvolysis of ions [Co(3Rpy)4Cl2]+ with R = Me and Et have been measured over a range of temperatures for a series of water-rich water + methanol mixtures to investigate the effect of changes in solvent structure on the solvolysis of complexes presenting a largely hydrophobic surface to the solvent. The variation of the enthalpies and entropies of activation with solvent composition has been determined. A free energy cycle relating the free energy of activation in water to that in water + methanol is applied using free energies of transfer of individual ionic species from water into water + methanol. Data for the free energy of transfer of chloride ions ΔG(Cl?) from both the spectrophotometric solvent sorting method and the TATB method for separating ΔG(salt) into ΔG(i) for individual ions are used: irrespective of the source of ΔG(Cl?), in general, ?ΔG(Co(Rpy)4Cl2+) > ?ΔG(Co(Rpy)4Cl2+), where Rpy = py, 4Mepy, 4Etpy, 3Etpy, and 3Mepy, showing that changes in solvent structure in water-rich water + methanol mixtures generally stabilize the cation in the transition state more than the cation in the initial state for this type of complex ion. A similar result is found when the free energy cycle is applied to the solvolysis of the dichloro (2,2′,2″-triaminotriethylamine)cobalt(III) ion. The introduction of a Me or Et group on the pyridine ring in [Co(Rpy)4Cl2]+ has little influence on the difference {ΔG(Co(Rpy)4Cl2+)?ΔG(Co(Rpy)4Cl2+)} in water + methanol with the mol fraction of methanol < 0.20.  相似文献   

16.
In aqueous acetonitrile (AN), Cu (I) forms the complexes Cu(AN)L+ and CuL with a series of substituted imidazoles (L). Stability constants logK of Cu(AN)+ + L ? Cu(AN)L+ and logβ2 were near 5 and 12, resp., log units for all ligands. The rate of autoxidation is described by ?d[O2]/dt=[CuL]2[O2](ka/(1+kb[CuL]) + (kc[L]+kd)/([CuL] + ke[Cu])), implying competition between one- or two-electron reduction of O2. The value of kc decreases from 5500M ?2S ?1 for unsubstituted imidazole to about 40M ?2S ?1 for 2-methylimidazole or 1,2-dimethyl-imidazole and essentially zero for the corresponding 2-ethyl-derivatives. On the other hand, ka and kb are much less influenced by the nature of the ligands, all values being near 5 · 104M ?2S ?1 and 103M ?1, respectively, for the complexes with the last four bases. Thus rather subtle sterical changes may strongly influence the relative importance of different pathways in the reduction of dioxygen by cuprous complexes.  相似文献   

17.
The ternary Cu2+?2,2′-bipyridyl-adenosine-5′-monophosphate-N(1)-oxide complex was investigated and compared with the binary Cu2+-adenosine-5′-monophosphate-N(1)-oxide complex (I) (cf. [2]). In both complexes Cu2+ is bound to the o-amino-N-oxide group of adenosine-5′-monophosphate-N(1)-oxide (HL). The stabilities of the complexes monoprotonated at the phosphate group are of the same order: log K = 11,20, and log K = 11,19. The acidity constants for the deprolonation of the phosphate group in these complexes are slightly different (pK = 5,55, and pK = 5,88), but as expected both values are lower than the corresponding value pK = 6,12 of the ligand.  相似文献   

18.
The characteristics of the photoinduced electron transfer reaction from polystyrene pendant tris(2,2′-bipyridyl)ruthenium (II) complex [Ru(bpy)] to methylviologen (MV2+) were studied. The rate constant k1 from the excited state of the complex, Ru(bpy), to MV2+ were determined for both the polymeric and monomeric complexes from the lifetime τ of Ru(bpy) and the quenching rate of Ru(bpy) by MV2+. The polymer pendant Ru(bpy) showed three kinds of τ components ranging from 7 to 474 ns, in contrast to the monomeric complex, which showed one component of 350 ns. The k1 values for both complexes were almost the same, on the order of 108 L/mol s. The photoinduced electron transfer from solid-phase Ru(bpy) to liquid-phase MV2+ was realized by utilizing the polymer complex, and the solid–liquid interphase reaction system is discussed.  相似文献   

19.
The first Alkaline Alkaline-Earth Oxocuprate (II, III): NaBa2Cu22+Cu3+O6 The compound NaBa2Cu3O6 was prepared by heating of Na2O2, BaO2, Cu2O in closed Ag-tubes. X-ray single crystal investigations led to orthorhombic symmetry, space group D-Fmmm; a = 8.4229; b = 11.4418; c = 14.4063 Å; Z = 8. Cu2+ and Cu3+ show square planar polygones of four and Na+ trigonal prisms of six O2?. The two barium point positions show coordination numbers C.N. = 8 and 6 + 4. The crystal structure is discussed.  相似文献   

20.
The two macrocycles 1-(2-aminoethyl)- and 1-[2-(dimethylamino)ethyl]-4, 8, 11-trimethyl-1, 4, 8, 11-tetraazacyclotetradecane, 1 and 2 , respectively, and their metal complexes with Co2+, Ni2+ and Cu2+ were prepared. The different spectral properties of the complexes with these two ligands can be rationalized by assuming that, in the case of 1 , the amino group of the pendant arm is axially coordinated to the metal ion giving a pentacoordinate structure, whereas the dimethylamino group of 2 cannot bind because of sterical hindrance. This is also corroborated by the observation that the complexes of 2 react with unidentate ligands such as N and SCN? to give ternary species MLX+, whereas those of 1 do not. This indicates that the complexes of 1 have no free coordination site, their coordination sphere being completely saturated by the five N-atoms of the macrocycle, whereas the complexes of 2 having a vacant site still can add an unidentate ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号