首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Azulene-1-carbaldehydes which have Me substituents at C(3) and C(8) and no substituent at C(6) react with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° to yield exclusively the Diels-Alder adduct at the seven-membered ring (cf. Scheme 3). The corresponding 1-carboxylates behave similarly (Scheme 4). Azulene-1-carbaldehydes which possess no Me substituent at C(8) (e.g. 11 , 12 in Scheme 2) gave no defined products when heated with ADM in decalin. On the other hand, Me substitutents at C(2) may also assist the thermal addition of ADM at the seven-membered ring of azulene-1-carbaldehydes (Scheme 6). However, in these cases the primary tricyclic adducts react with a second molecule of ADM to yield corresponding tetracyclic compounds. The new tricyclic aldehydes 16 and 17 which were obtained in up to 50% yield (Scheme 3) could quantitatively be decarbonylated with [RhCl(PPh3)3] in toluene at 140° to yield a thermally equilibrated mixture of four tricycles (Scheme 8). It was found that the thermal isomerization of these tricycles occur at temperatures as low as 0° and that at temperatures > 40° the thermal equilibrium between the four tricycles is rapidly established via [1,5]-C shifts. The establishment of the equilibrium makes the existence of two further tricycles necessary (cf. Scheme 8). However, in the temperature range of up to 85° these two further tricycles could not be detected by 1H-NMR. When heated in the presence of excess ADM in decalin at 180°, the ‘missing’ tricyclic forms could be evidenced by their tetracyclic trapping products ‘anti’- 45 and ‘anti’- 48 , respectively (Scheme 9).  相似文献   

2.
3‐(Phenylsulfonyl)benzo[a]heptalene‐2,4‐diols 1 can be desulfonylated with an excess of LiAlH4/MeLi?LiBr in boiling THF in good yields (Scheme 6). When the reaction is run with LiAlH4/MeLi, mainly the 3,3′‐disulfides 6 of the corresponding 2,4‐dihydroxybenzo[a]heptalene‐3‐thiols are formed after workup (Scheme 7). However, the best yields of desulfonylated products are obtained when the 2,4‐dimethoxy‐substituted benzo[a]heptalenes 2 are reduced with an excess of LiAlH4/TiCl4 at ?78→20° in THF (Scheme 10). Attempts to substitute the PhSO2 group of 2 with freshly prepared MeONa in boiling THF led to a highly selective ether cleavage of the 4‐MeO group, rather than to desulfonylation (Scheme 13).  相似文献   

3.
It is shown that 4,8‐diphenylazulene ( 1 ) can be easily prepared from azulene by two consecutive phenylation reactions with PhLi, followed by dehydrogenation with chloranil. Similarly, a Me group can subsequently be introduced with MeLi at C(6) of 1 (Scheme 2). This methylation led not only to the expected main product, azulene 2 , but also to small amounts of product 3 , the structure of which has been determined by X‐ray crystal‐structure analysis (cf. Fig. 1). As expected, the latter product reacts with chloranil at 40° in Et2O to give 2 in quantitative yields. Vilsmeier formylation of 1 and 2 led to the formation of the corresponding azulene‐1‐carbaldehydes 4 and 5 . Reduction of 4 and 5 with NaBH4/BF3 ? OEt2 in diglyme/Et2O 1 : 1 and BF3 ? OEt2, gave the 1‐methylazulenes 6 and 7 , respectively. In the same way was azulene 9 available from 6 via Vilsmeier formylation, followed by reduction of azulene‐1‐carbaldehyde 8 (Scheme 3). The thermal reactions of azulenes 1, 6 , and 7 with excess dimethyl acetylenedicarboxylate (ADM) in MeCN at 100° during 72 h afforded the corresponding heptalene‐4,5‐dicarboxylates 11, 12 , and 13 , respectively (Scheme 4). On the other hand, the highly substituted azulene 9 gave hardly any heptalene‐4,5‐dicarboxylate.  相似文献   

4.
On treatment with 6 mol-equiv. of lithiomethyl phenyl sulfone at −78° in THF, dimethyl 5,6,8,10-tetramethylheptalene-1,2-dicarboxylate ( 1′b ) gives, after raising the temperature to −10° and addition of 6 mol-equiv. of BuLi, followed by further warming to ambient temperature, the corresponding 3-(phenylsulfonyl)benzo[a]heptalene-2,4-diol 2b in yields up to 65% (cf. Scheme 6 and Table 2), in contrast to its double-bond-shifted (DBS) isomer 1b which gave 2b in a yield of only 6% [1]. The bisanion [ 9 ]2− of the cyclopenta[a]heptalen-1(1H)-one 9 (cf. Fig. 1), carrying a (phenylsulfonyl)methyl substituent at C(11b), seems to be a key intermediate on the reaction path to 2b , because 9 is transformed in high yield into 2b in the presence of 6 mol-equiv. of BuLi in the temperature range of −10° to room temperature (cf. Scheme 7). Heptalene-dicarboxylate 1′b was also transformed into benzo[a]heptalene-2,4-diols 2c – g by a number of lithiated methyl X-phenyl sulfones and BuLi (cf. Scheme 9 and Table 3).  相似文献   

5.
It is shown that heptalene‐4,5‐dicarboxylates 2 , which react with lithiated methyl sulfones mainly in a Michael fashion at C(3) (cf. Scheme 2), so that the formation of 3‐sulfonylbenzo[a]heptalene‐2,4‐diols 5 is repressed or completely suppressed, can be transformed into corresponding pseudo‐esters 15 (Scheme 4). These pseudo‐esters, on treatment with lithiated methyl sulfones, followed by addition of BuLi, furnish the 3‐sulfonylbenzo[a]heptalene‐2,4‐diols 5 in excellent‐to‐moderate yields without formation of Michael adducts or their follow‐up products (cf. Scheme 5 and 6). The reaction of the pseudo‐ester 15a with Li[13C]H2SO2Ph, followed by treatment with non‐labeled LiCH2SO2Ph and then BuLi, led to the exclusive formation of 3‐(phenylsulfonyl)‐[1‐13C]benzo[a]heptalene‐2,4‐diol 5a* (Scheme 9). This experiment demonstrates that the (phenylsulfonyl)acetyl groups at C(4) and C(5) of the heptalene core retain their individual positions in the course of the benzo[a]heptalene‐2,4‐diol formation. These findings are only compatible with an intramolecular rearrangement mechanism as depicted in Scheme 10.  相似文献   

6.
The intramolecular addition of unsaturated alkoxycarbenes leads in high yields and diastereoselectively to fused cyclopropanes (Scheme 1). Reaction of the halodiazirines 2 , 10 , 11 , and 20 with the unsaturated phenolates 1 , 8 , and 9 yielded intermediate alkoxydiazirines, and hence the homobenzofurans 5 , 12 – 16 , 22 , and 26 (Scheme 2). The intermediate alkoxydiazirine 25 was isolated at low temperature (Scheme 3). An equilibrium between the cyclopropane derivatives 12 and 27 , and 14 and 28 was established at 120°. At 200°, 12 rearranged to the chromene 29 , by disrotarory opening of the cyclopropane ring, followed by electrocyclization. Hydrogenation of 29 gave the (all-cis)-chroman 32 (Scheme 4). The homoindole 35 was obtained in good yields, presumably by an SRN1 reaction from 34 and 10 (Scheme 5).  相似文献   

7.
1-Mesityl allene ( 1 ), 1-mesityl-3-methyl allene ( 2 ) and 1-mesityl-3,3-dimethyl allene ( 3 ) rearrange thermally at 150–190° in decane via [1,5s]sigmatropic H-shifts to yield the o-quinodimethanes 4 , which cyclise to give the 1,2-dihydronaphthalenes 5 and 6 and/or undergo [1,7 a]sigmatropic H-shifts to give 1-mesityl-(Z)-buta-1, 3-dienes (Z)- 7 and (Z)- 8 , respectively (Schemes 1,3,4 and 5) in almost quantitative yields. The activation parameters of these isomerisations are given in Table 1. 1-Mesityl-1-methyl allene ( 9 ) isomerises at 190° to give 4,5,7-trimethyl-1,2-dihydronaphthalene ( 17 ) in 50% yield (Scheme 6). 2′-Isopropylphenyl allene ( 10 ) in decane rearranges at 170° to 1-(Z)-propenyl-2-isopropenyl-benzene ((Z)- 19 , Scheme 7). Deuterium labelling experiments show that the rate determining step is an aromatic [1,5s]sigmatropic hydrogen shift from an sp3- to an sp-hybridised carbon atom. The primary kinetic isotopic effect (kH/kD) is 3.45, while the secondary βisotopic effect is 1.20 (Scheme 7 and Table 2).  相似文献   

8.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

9.
Boron Trifluoride Catalyzed Reaction of 3-Amino-2H-azirines and Amides: Formation of 4,4-Disubstituted 4H-Imidazoles Reaction of trifluoroacetamide and 3-amino-2H-azirines 1 in refluxing MeCN affords 4-amino-2-(trifluoromethyl)-4H-imidazoles 5 in fair yields (Scheme 3). Less acidic amides do not react with 1 under similar conditions. Therefore, a procedure involving BF3-catalysis has been elaborated: the aminoazirine 1 in CH2Cl2 at ?78° is treated with BF3 · Et2O and then with a solution of the sodium salt of an amide in THF, prepared by addition of sodium hexamethyldisilazane at ?78°. The 4H-imidazoles of type 5 are formed in ca. 50% yield (Scheme 4). Reaction mechanisms for this ring enlargement of 1 are proposed in Schemes 5 and 6.  相似文献   

10.
Treatment of {[(benzyloxy)carbonyl]amino}‐substituted sulfones 1 with 2‐[(trimethylsilyl)oxy]furan ( 2 ) in the presence of InCl3 as a catalyst at room temperature produced the γ‐butenolactone derivatives 3 and 4 containing a protected amino group (Scheme 1). The products were formed in high yields (81–92%) within 3–10 h favoring the anti‐isomer 3 .  相似文献   

11.
Synthesis of Trifluoromethyl-Substituted Sulfur Heterocycles Using 3,3,3-Trifluoropyruvic-Acid Derivatives The reaction of methyl 3,3,3-trifluoropyruvate ( 1 ) with 2,5-dihydro-1,3,4-thiadiazoles 4a, b in benzene at 45° yielded the corresponding methyl 5-(trifluoromethyl)-1,3-oxathiolane-5-carboxylates 5a, b (Scheme 1) via a regioselective 1,3-dipolar cycloaddition of an intermediate ‘thiocarbonyl ylide’ of type 3 . With methyl pyruvate, 4a reacted similarly to give 6 in good yield. Methyl 2-diazo-3,3,3-trifluoropropanoate ( 2 ) and thiobenzophenone ( 7a ) in toluene underwent a reaction at 50°; the only product detected in the reaction mixture was thiirane 8a (Scheme 2). With the less reactive thiocarbonyl compounds 9H-xanthene-9-thione ( 7b ) and 9H-thioxanthene-9-thione ( 7c ) as well as with 1,3-thiazole-5(4H)-thione 12 , diazo compound 2 reacted only in the presence of catalytic amounts of Rh2(OAc)4. In the cases of 7a and 7b , thiiranes 8b and 8c , respectively, were the sole products (Scheme 3). The crystal struture of 8c has been established by X-ray crystallography (Fig.). In the reaction with 12 , desulfurization of the primarily formed thiirane 14 gave the methyl 3,3,3-trifluoro-2-(4,5-dihydro-1,3-thiazol-5-ylidene)propanoates (E)-and (Z)- 15 (Scheme 4). A mechanism of the Rh-catalyzed reaction via a carbene addition to the thiocarbonyl S-atom is proposed in Scheme 5.  相似文献   

12.
In order to trap ‘thiocarbonyl-aminides’ A , formed as intermediates in the reaction of thiocarbonyl compounds with phenyl azide, a mixture of 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 1 ), phenyl azide, and fumarodinitrile ( 8 ) was heated to 80° until evolution of N2 ceased. Two interception products of the ‘thiocarbonylaminide’ A (Ar?Ph) were formed: the known 1,4,2-dithiazolidine 3 (cf. Scheme 1) and the new 1,2-thiazolidine 12 (Scheme 2). The structure of the latter was established by X-ray crystallography (Fig.1). The analogous ‘three-component reaction’ with dimethyl fumarate ( 9 ) yielded, instead of 8 , in addition to the known interception products 3 and 6 (Scheme 1), two unexpected products 15 and 16 (Scheme 3), of which the structures were elucidated by X-ray crystallography (Fig.2). Their formation is rationalized by a primary [2 + 3] cycloaddition of diazo compound 18 with 1 to give 19 , followed by a cascade of further reactions (Scheme 4).  相似文献   

13.
Thermolysis of the 1,2-bis(glucosylalkynyl)benzenes 6 and 16 was studied to evaluate the effects of intramolecular H-bonding on the activation energy of the Bergman-Masamune-Sondheimer cycloaromatization, and to evaluate the use of the cycloaromatization for the synthesis of di-glycosylated naphthalenes. The dialkynes were prepared by cross-coupling of the O-benzylated or O-silylated glucosylalkynes 1 and 4 (Scheme 1). Thiolysis of the known 1 , or acetolysis of 1 , followed by deacetylation ( →2→3 ) and silylation gave 4 . Cross-coupling of 1 or 4 with iodo- or 1,2-diiodobezene depended upon the nature of the added amine and on the protecting group, and led to the mono- and dialkynylbenzenes 5 and 6 , or 12, 13 , and 15 , respectively. The benzyl ethers 5 and 6 gave poor yields upon acetolysis catalyzed by BF3 · OEt2, while Ac2O/CoCl2 · 6 H2O transformed 6 in good yields into the regioselectively debenzylated 10 . Desilylation of 7 and 13 gave the alcohols 8 and 14 , respectively. Thermolysis of 6 in PhCl gave 22 and 23 , independently of the presence or absence of 1,4-cyclohexadiene; 23 was formed from 22 (Scheme 2). Acetolysis of 22 gave the hexaacetate 24 that was completely debenzylated by thiolysis, yielding the diol 26 and trans-stilbene, evidencing the nature and position of the bridge between the glucosyl moieties (Scheme 3). Thiolysis of 22 yielded the unprotected 2,3-diglucosylnaphthalene 28 , a new type of C-glycosides. Depending upon conditions, hydrogenation of 22 led to 29 (after acetylation), 30 , or 32 . NMR and particularly NOE data evidence the threo-configuration of the bridge. The structure of 23 was confirmed by hydrolysis to the diol 34 and diphenylacetaldehyde, and by correlation of 23 with 22 via the common product 31 . Formation of 22 is rationalized by a Bergman cyclization to a diradical, followed by regioselective abstraction of a H-atom from the BnO? C(2) group, and diastereoselective combination of the doubly benzylic diradical (Scheme 4). While thermolysis of 3 in EtOH sets in around 140°, 16 did not react at 160° and decomposed at 180–220°. No evidence for intramolecular H-bonds of 16 , as compared to 14 , were found.  相似文献   

14.
It is shown that, upon irradiation in CDCl3 solution, 5,6,8,10-tetramethylheptalene-1,2-dicarboxylic anhydride ( 6 ) rearranges to its double-bond-shift (DBS) isomer 7 in an equilibrium reaction (Scheme 2). The isomer 7 is DBS stable at ?50°. At ca. 30°, a thermal equilibrium with 97.8% of 6 and 2.2% of 7 is rapidly established. Similarly, the ‘ortho’-anhydrides 9 and 11 (Schemes 4 and 5) can be rearranged to their corresponding DBS isomers 12 and 13 , respectively. Whereas 12 is DBS stable at 30° (at 100° in tetralin, 94.0% of 9 are in equilibrium with 6.0% of 12 ), the i-Pr-substituted isomer 13 is already at 30° in thermal equilibrium with 11 leading to 98.7% of 11 and 1.3% of 13 . It is shown by rearrangement of diasteroisomeric ‘ortho’-anhydrides of known relative and absolute configuration (Scheme 6) that the DBS in such five-ring-annelated heptalenes occurs with retention of the configuration of the heptalene skeleton as already established for other heptalene compounds. It is found that the DBS process may also take place under acid catalysis (e.g. HCl/CH3OH), thus yielding 9 from 12 (Scheme 9). The ‘ortho’-anhydrides 21 and 23 (Scheme 10) which are isomeric with 9 and 11 (Scheme 3) undergo rapid DBS' already at room temperature. The thermal equilibrium 21?22 consists of 18% of 21 and 82% of 22 at 30° and that of 23?24 of 17% of 23 and 83% of 24 at ?30°. From these equilibrium mixtures, the pure DBS isomer 22 can be obtained by crystallization. Again, these rapid DBS' occur with retention of configuration of the heptalene skeleton (Fig. 4).  相似文献   

15.
The application of the allyl-ester moiety as protecting principle for the carboxy group of N-acetylneuraminic acid is described. Peracetylated allyl neuraminate 2 is synthesized by reacting the caesium salt of the acid 1 with allyl bromide. Treatment of 2 with HCl in AcCl or with HF/pyridine gives the corresponding 2-chloro or 2-fluoro derivatives 3 and 4 , respectively (Scheme 1). In the presence of Ag2CO3, the 2-chloro carbohydrate 3 reacts with di-O-isopropylidene-protected galactose 5 to give the 2–6 linked disaccharide with the α-D -anomer 6a predominating (α-D /β-D = 6:1; Scheme 2). Upon activation of the 2-fluoro derivative 4 with BF3 · Et2O, the β-D -anomer 6b is formed preferentially (α-D /β-D = 1:5). In further glycosylations of 4 with long-chain alcohols, the β-D -anomers are formed exclusively (see 10 and 11 ; Scheme 4). The allyl-ester moiety can be removed selectively and quantitatively from the neuraminyl derivatives and the neuraminyl disaccharides by Pd(0)-catalyzed allyl transfer to morpholine as the accepting nucleophile (see Scheme 5).  相似文献   

16.
It is shown that azulenes react with dimethyl acetylenedicarboxylate (ADM) in solvents such as toluene, dioxan, or MeCN in the presence of 2 mol-% [RuH2(PPh3)4] already at temperatures as low as 100° and lead to the formation of the corresponding heptalene-1,2-dicarboxylates in excellent yields (Tables 1 and 2). The Ru-catalyzed reaction of ADM with 1-(tert-butyl)-4,6,8-trimethylazulene ( 31 ) takes place even at room temperature, yielding the primary tricyclic addition product 32 and its thermal retro-Diels-Alder product dimethyl 4,6,8-trimethylazulene-1,2-dicarboxylate ( 21 ; Scheme 4). At 100° in MeCN, 32 yields 90% of 21 and only 10% of the corresponding heptalene. These observations demonstrate that [RuH2(PPh3)4] catalyzes the first step of the thermal formation of heptalenes from azulenes and ADM which occurs in apolar solvents such as tetralin or decalin at temperatures > 180° (cf. Scheme 1).  相似文献   

17.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Thiazolidine-2-thione Reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-thiazolidine-2-thione ( 6 ) in MeCN at room temperature leads to a mixture of perhydroimidazo[4,3-b]thiazole-5-thiones 7 and N-[1-(4,5-dihydro-1,3-thiazol-2-yl)alkyl]-N′,N′-dimethylthioureas 8 (Scheme 2), whereas, in i-PrOH at ca. 60°, 8 is the only product (Scheme 4). It has been shown that, in polar solvents or under Me2NH catalysis, the primarily formed 7 isomerizes to 8 (Scheme 4). The hydrolysis of 7 and 8 leads to the same 2-thiohydantoine 9 (Scheme 3 and 5). The structure of 7a, 8c , and 9b has been established by X-ray crystallography (Chapt. 4). Reaction mechanisms for the formation and the hydrolysis of 7 and 8 are suggested.  相似文献   

18.
The dehydrogenation reaction of a mixture of heptalene‐1,2‐ and heptalene‐4,5‐dimethanols 4a and 4b with basic MnO2 in AcOEt at room temperature led to the formation of the corresponding heptaleno[1,2‐c]furan‐1‐one 6a and heptaleno[1,2‐c]furan‐3‐one 7a (Scheme 2). Both products can be isolated by chromatography on silica gel. The methylenation of the furan‐3‐one 7a with 1 mol‐equiv. of Tebbe's reagent at ?25 to ?30° afforded the 2‐isopropenyl‐5‐methylheptalene‐1‐methanol 9a , instead of the expected 3,6‐dimethylheptaleno[1,2‐c]furan 8 (Scheme 3). Also, the treatment of 7a with Takai's reagent did not lead to the formation of 8 . On standing in solution at room temperature, or more rapidly on heating at 60°, heptalene 9a undergoes a reversible double‐bond shift (DBS) to 9b with an equilibrium ratio of 1 : 1.  相似文献   

19.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole 3‐oxides 1 with Ac2O in CH2Cl2 at 0 – 5° leads to the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 4 in good yields. In refluxing Ac2O, the N‐oxides 1 are transformed to N‐acetylated 1,3‐dihydro‐2H‐imidazol‐2‐ones 5 . The proposed mechanisms for these reactions are analogous to those for N‐oxides of 6‐membered heterocycles (Scheme 2). A smooth synthesis of 1H‐imidazole‐2‐carbonitriles 2 starting with 1 is achieved by treatment with trimethylsilanecarbonitrile (Me3SiCN) in CH2Cl2 at 0 – 5° (Scheme 3).  相似文献   

20.
Oxidation of 1,2-Thiazoles; A Convenient Approach to 1,2-Thiazol-3(2H)-one 1,1-Dioxides The 1,2-thiazoles obtained from 3-chloroalk-2-enals and ammonium thiocyanate ( 7 → 9 , Scheme 1) are easily transformed to 1,2-thiazol-3(2H)-one 1,1-dioxidcs 10 on treatment with H2O2 in AcOH at 80°. Hydrogenation of 10 in AcOH yields the corresponding saturated 1,2-thiazolidin-3-one 1,1-dioxides 16 (Scheme 3). Cycloalka[c]-1,2-thiazoles 18 are prepared from 2-[(thiocyanato)methyliden]cycloalkan-1-ones and ammonia (Scheme 4). Surprisingly, oxidation of 18a with H2O2 in AcOH yields the tricyclic oxaziridine 19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号