首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Hexagonal Perovskites with Cationic Vacancies. XXXI. Systems BaO? Re2O7? M O5 with MV = Nb, Ta In the systems BaO? Re2O7? MO5 three quaternary oxides are formed, which belong to the perovskite stacking polytypes with cationic vacancies: Ba8Re7/2M□3O24 (MV = Nb, Ta; rhombohedral 24 L type; sequence (hhhhchhc)3; space group R3 m), Ba4Re9/8Ta13/85/4O12 (rhombohedral 12 L type; sequence (hhcc)3; space group R3 m) and the phases Ba5BaRe3/2?xM □O15?xx (MV = Nb, Ta; variants of a hexagonal 5 L type).  相似文献   

2.
On Hexagonal Perovskites with Cationic Vacancies. XXVI. Ba12Ba2 2/3M 1/32O333 (MV = Nb, Ta) – the First Stacking Polytypes of a Rhombohedral 36 L-Type In the systems BaO? MO5(MV = Nb, Ta) for a Ba:MV ratio of 2:1 polymorphism is observed. Here the low temperature modifications are described. They crystallize in a rhombohedral 36 L structure with three formula units Ba12Ba2 2/3M 1/32O333 for the trigonal setting (MV = Nb: a = 5.922 Å; c = 93.25 Å; Ta: a = 5,922 Å; s = 93.4 Å).  相似文献   

3.
Treatment of chlorination products of rare earths oxidesulphates with methanol yields chloride-sulphates MIIIClSO4 as residues. Thermal decomposition of chloride-sulphates yields oxide-sulphates MO2SO4; as intermediates, mixtures of the composition MO2SO4? M(SO4)3 are obtained.  相似文献   

4.
The kinetics of formation and dissociation of [V(H2O)5NCS]2+ have been studied, as a function of excess metal-ion concentration, temperature, and pressure, by the stopped-flow technique. The thermodynamic stability of the complex was also determined spectrophotometrically. The kinetic and equilibrium data were submitted to a combined analysis. The rate constants and activation parameters for the formation (f) and dissociation (r) of the complex are: k/M ?1 · S?1 = 126.4, k/s?1 = 0.82; ΔH /kJ · mol?1 = 49.1, ΔH/kJ · mol?1 = 60.6; ΔS/ J·K?1·mol?1= ?39.8, ΔSJ·K?1·mol?1 = ?43.4; ΔV/cm3·mol?1 = ?9.4, and ΔV/cm3 · mol?1 =?17.9. The equilibrium constant for the formation of the monoisothiocynato complex is K298/M ?1 = 152.9, and the enthalpy and entropy of reaction are ΔH0/kJ · mol?1 = ? 11.4 and ΔS0/J. K?1mol?1 = +3.6. The reaction volume is ΔV0/cm3· mol?1 = +8.5. The activation parameters for the complex-formation step are similar to those for the water exchange on [V(H2O)6]3+ obtained previously by NMR techniques. The activation volumes for the two processes are consistent with an associative interchange, Ia, mechanism.  相似文献   

5.
On Hexagonal Perovskites with Cationic Vacancies. XVI. Rhombohedral 12 L-Stacking Polytypes Ba3AIIIM □O12 with MV = Nb, Ta The white quaternary oxides Ba3LaM□O12 with MV = Nb, Ta belong to the group of hexagonal perovskites with cationic vacancies. They crystallize in a rhombohedral 12 L-structure (sequence (hhcc)3; space group R3 m) with a = 5.751 Å; c = 28.11 Å (MV = Nb); a = 5.746 Å; c = 28.20 Å (Ta) and Z = 3. Signs for the formation of isotypic compounds with AIII = Pr, Nd could be obtained as well.  相似文献   

6.
The formation of ternary nitridometalates from the elements in the case of the systems Li—Cr, V, Mn—N leads to compounds which contain the transition metals in the highest (VV, CrVI) or a comparably high (MnV) oxidation state. In the corresponding calcium and strontium systems, the transition metals show a lower oxidation state (VIII, CrIII, MnIII). Transition metals with intermediate oxidation states (CrV, MnIV) are present in the quaternary (mixed cation) compounds Li4Sr2[CrN6], Li6Ca2[MnN6], and Li6Sr2[MnN6] (R3¯(#148), a = 585.9(3) pm, c = 1908.6(4) pm, Z = 3), as well as in the solid solution series Li6(Ca1—xSrx)2[MnN6].  相似文献   

7.
On Hexagonal Perovskites with Cationic Vacancies. XXIV. Rhombohedral 9 L Stacking Polytypes in the Systems Ba3W M □O9?x/2x?2 with MV = Nb, Ta In the system Ba3WNb□O9?x/2x/2 stacking polytypes of rhombohedral 9 L type (sequence (hhc)3; space group R3 m) can be prepared with ~1/3 ? × ? 2. For x = 2(Ba3Nb2□O8□) two modifications are formed. In the corresponding Ta system the phase with is reduced to a smaller region with x ? 1/3.  相似文献   

8.
Ab initio calculations are performed with 6–31G basis set to study the geometry and binding of the H3O, H5O, H7O, and H9O complexes. The H3O complex is also investigated with the 6–31 G* basis set and MP 2 (Moller–Plesset perturbation theory of second order).  相似文献   

9.
On Ordered Perovskites with Cationic Vacancies. X. Compounds of Type A B B □1/4MVIO6 ? A BIIB □M O24 with AII, BII = Ba, Sr, Ca and MVI = U, W Perovskites of type Ba8BIIB2III□UO24 show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba8BIIB□U4O24), compared to cubic 1:1 ordered perovskites A2BMO6. In the series Ba8BaB□W4O24 and Sr8SrB□W4O24 different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A2BMO6, the cell contains eight formula units ABIIB□W4O24. The higher ordered cells with UVI and WVI are face centered, which has its origin in an ordering of cationic vacancies.  相似文献   

10.
Kinetik und mechanismus der oxydation von diaqua(nitrilotriacetato)-cobaltat(II) durch peroxodisulfat in wäßrigsauren lösungen Die Kinetik der Oxydation von CoII-NTA durch Peroxodisulfat (S2O) in saurem Medium photometrisch untersucht. Die Stöchiometrie der Reaktion ist: 2CoII-NTA? + S2O → 2CoIII?NTA + 2SO. Im pH-Bereich 4,2—5,4 folgt die Reaktion dem Geschwindigkeitsgesetz [H+] und [S2O] sind die Wasserstoff- bzw. Peroxodisulfationen-Konzentration, KH ist die Dissoziationskonstante des CoII(NTA)H und kH ist die Geschwindigkeitskonstante für den Elektronenübergang. Die Aktivierungsparameter werden mitgeteilt und der mögliche Mechanismus für den Elektronenübergang wird diskutiert.  相似文献   

11.
Cadmium in Square Pyramids of Oxygen in the Barium Cadmium Oxovanadate: Ba2Cd3(VO4)2(V2O7) Single crystals of Ba2Cd3(VO4)2(V2O7) have been prepared by crystallization of a melt of BaCO3, CdO and V2O5. It shows orthorhombic symmetry, space group D? P212121, a = 7.206(2), b = 9.978(1), c = 19.617(3) Å, Z = 4. The crystal structure is characterized by (VO4)3? and (V2O7)4? groups, CdO6 octahedra, BaO12 and BaO9 polyhedra and with respect to Cd containing oxides unusual square pyramids of O2? around Cd2+. The observed [CdO4] zickzack chains are connected by VO4 tetrahedra, V2O7 double tetrahedra and CdO5 pyramids, forming a tunnel structure along [100]. The tunnels are filled by barium.  相似文献   

12.
D. C. polarography and cyclic voltammetry were used for investigating the reduction processes of the tris(1,10-phenanthroline)cobalt(II) and bis(2,9-dimethyl-1, 10-phenanthroline)-cobalt(II) perchlorates in 0.1 M solutions of tetraethylammonium perchlorate in acetonitrile. The first complex gave a four-step reduction wave; the first two steps were found to be diffusion controlled and reversible reductions from Co(phen)+ to Co(phen)3+ to Co(phen) to Co(phen;) occured. The second complex gave a six-step reduction wave; the first three steps were found to be diffusion controlled and were to be considered as successive reversible reductions from Co(2, 9dm-phen)+ to Co(2, 9dmphen), from Co(2, 9dmphen) to Co(2, 9dmphen)2 and from Co(2, 9dmphen)2 to Co(2, 9dmphen).  相似文献   

13.
On the Stoichiometry of the Allotropic Variation γ-Bi2O3 The study of the solid solutions Bi12[BBi□1/5]O20 (B+V = As, V) with 0 ? x ? 0,80 leads for x = 0,77 to a phase whose cubic centered symmetry and parameter (10.255 Å) correspond to those previously announced for γ-Bi2O3. The présence of impurities seems required to obtain such a phase whose theoretical stoichiometry should be Bi12[Bi□1/5]O20 i. e. Bi2O3,125.  相似文献   

14.
Some tetracoordinated complexes having the formulae, [AgL4]X (L = Triphenyl-arsine; X = NO, ClO and BrO) and [AgL3X] (L = Triphenyl-arsine/phosphine; X = SCN? and NCO?) have been prepared and characterised by analyses, conductance, magnetic susceptibility and infra-red spectroscopy.  相似文献   

15.
The characteristics of the photoinduced electron transfer reaction from polystyrene pendant tris(2,2′-bipyridyl)ruthenium (II) complex [Ru(bpy)] to methylviologen (MV2+) were studied. The rate constant k1 from the excited state of the complex, Ru(bpy), to MV2+ were determined for both the polymeric and monomeric complexes from the lifetime τ of Ru(bpy) and the quenching rate of Ru(bpy) by MV2+. The polymer pendant Ru(bpy) showed three kinds of τ components ranging from 7 to 474 ns, in contrast to the monomeric complex, which showed one component of 350 ns. The k1 values for both complexes were almost the same, on the order of 108 L/mol s. The photoinduced electron transfer from solid-phase Ru(bpy) to liquid-phase MV2+ was realized by utilizing the polymer complex, and the solid–liquid interphase reaction system is discussed.  相似文献   

16.
63Cu-NMR.-Spectra of Cu(CH3CN)4X (X = ClO, BF, PF) and Cu(C5H5N)4X (X = ClO, BF) in solution are reported at different temperatures and concentrations. The influence of temperature on the linewidth and chemical shift indicates an equilibrium of Cu(CH3CN) and Cu(C5H5N) with another complex of lower symmetry. The preferential solvation of Cu (I) by pyridin in a mixture acetonitrile/pyridine is clearly shown.  相似文献   

17.
Preparation and Spectroscopic Characterization of Fluoro-Chloro-Iridates(V) By careful oxidation of the pure fluoro-chloro iridates(IV) with BrF3 in dichloromethane the corresponding pentavalent complexes [IrF5Cl]?, cis-[IrF4Cl2]?, and fac-[IrF3Cl3]? are formed without replacements of Cl ligands. The vibrational spectra of these mixed ligand complexes are assigned according to point groups C4v, C2v, and C3v. The increased bond strength compared with the corresponding IrIV compounds is indicated by a significant shift to higher energy by about 5–15%. The anomalous intensities of some of the Raman active fundamentals are attributed to the resonance Raman effect. The electronic absorption spectra are measured on the solid tetraethylammonium salts of the fluoro-chloro iridates(V) at 10 K. The strong bands in the UV/VIS region are assigned to charge transfer transitions from π(t1u, t2u) and σ(t1u) Cl orbitals into the π(t)IrV level. The intraconfigurational transitions within the t configuration of IrV are split by spin orbit coupling and lowered symmetry, observed in the ranges 3000, 5100–6400, 10900–13000, and 18200 cm?1. The O? O transitions are deduced from the vibrational fine structure; in some cases they are confirmed by electronic Raman bands. With increasing number of F ligands all absorption bands are shifted systematically to higher energies.  相似文献   

18.
The electron transfer reactivity of the O2+O system in low-spin coupling is studied at the second-order unrestricted Møller–Plesset (full)/6-311+G* basis set level by using different transition state structures. The properties and stabilities of the encounter complexes are compared for the five selected coupling structures: two T type, collinear, parallel, and crossing. The activation barriers and the coupling matrix elements are also calculated. The results indicate that the structures of the encounter complexes directly affect the electron transfer mechanism and rate. These encounter complexes are structurally unstable, the contact distances between the acceptor O2 and the donor O are generally large, the interaction is weak, and the structures are floppy. The electronic transmission factor for the reacting system, O2+O, is less than unity; thus, the electron transfer reaction is nonadiabatic in nature. Analysis of the dependence of relevant kinetic parameters on various influencing factors has shown that the effect of the solvent medium on the coupling matrix element is small but that on the electron transfer rate is very large. Among the five selected transition state structures, the electron transfer is more likely to take place via T1-type and P-type structures. In the low-spin coupling the favorable electronic states for two reacting species are 1∑(O2) and X2Πg(O) instead of X3∑(O2) and X2πg(O), which are favorable for the high-spin (quartet state) coupling mechanism. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 989–998, 1999  相似文献   

19.
Existing data on the self-reactions of tertiary peroxy radicals RO2 has been reanalyzed and corrected to deduce Arrhenius parameters for both termination and nontermination paths. For R = t-Butyl, these are logkt(M?1sec?1) = 7.1 - (7.0/θ) and logknt(M?1sec?1) = 9.4 - (9.0/θ), respectively, different from those recommended by other authors. The higher magnitudes observed for termination processes of tertiary peroxy radicals like those of cumyl and 1,1-diphenylethyl have been discussed in terms of a much greater cage recombination of cumyloxy radicals as contrasted with t-butoxy radicals. It is shown that for benzyl peroxy radicals, the R—O bond dissociation energy is sufficiently low (18–20 kcal) that reversible dissociation into R˙ + O2 opens a competing second-order path to fast recombination R˙ + RO → ROOR. This path is probably not important for cumyl peroxy radicals under usual experimental conditions but can become important for 1,1-diphenyl ethyl peroxy radicals at (O2) < 10?3M. At very low RO concentrations (<10?5M), in the absence of added O2, an apparent first-order disappearance of RO can occur reflecting the rate determining breaking of the cumyl—O bond followed by the second step above. The thermochemistry of RO is used to show that the reaction of R2O4 → 2RO + O2 must be concerted and cannot proceed via RO which is too unstable and cannot form even from RO˙ + O2.  相似文献   

20.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号