首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved ion-pair reversed-phase high-performance liquid chromatographic system has been developed for the separation of uroporphyrin isomers I, II and III, whereas the isomers III and IV could not be resolved. Application of this method to the analysis of urines from porphyric patients indicated the presence of small amounts of the non-typical uroporphyrin isomer II. The questionable presence of the isomer IV was confirmed by acid-catalyzed decarboxylation to the corresponding coproporphyrin isomers, which were completely separated by a modified ion-pair method at elevated column temperatures. These procedures enabled the detection of small fractions of the atypical isomers II (1-3%) and IV (8-15%) besides the normal isomers I and III in urines of patients suffering from attacks of acute intermittent porphyria. Because such urines contain large amounts of porphobilinogen, the nonenzymatic self-condensation of porphobilinogen to uroporphyrinogens was studied under mild reaction conditions. In these experiments quite similar isomeric compositions were observed as compared to those in urines of patients with acute intermittent porphyria. Thus the non-typical uroporphyrin isomers II and IV present in human urines originate from a simple non-enzymatic condensation of porphobilinogen.  相似文献   

2.
Separation of porphyrin isomers by high-performance liquid chromatography   总被引:2,自引:0,他引:2  
A high-speed reversed-phase high-performance liquid chromatographic method using an octadecylsilyl 3 cm long (3 microns particle size) column to separate the free acids of uroporphyrins I and III and coproporphyrins I and III from each other, and from the type I isomers of several other porphyrin carboxylic acids, is described. Separation of the porphyrins was achieved in less than 8 min, and injections were possible every 12 min. The detection limits of uroporphyrin, coproporphyrin, and mesoporphyrin were 75, 45, and 35 fmol (at a signal-to-noise ratio of 2), respectively. Application of the method to the determination of urinary and liver porphyrin patterns is shown.  相似文献   

3.
Abstract

The separation of uroporphyrin I and III isomers by reversed-phase high performance liquid chromatography on ODS-Hypersil with ammonium acetate buffer-acetonitrile solvent systems is described. The effects of buffer concentration, pH, organic modifier proportion and different organic modifiers on the resolution are studied. The optimum conditions for the separation were 12–13% acetonitrile in 1M ammonium acetate buffer pH 5.10–5.20. The method also separated uroporphyrin I and III from the II isomers but the resolution of uroporphyrin III and IV isomers was not achieved.  相似文献   

4.
Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 μm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 μm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 μm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 μm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 μm average particle size materials for clinical sample analysis.  相似文献   

5.
The isomerization of tetraaryl tetrakis(trifluoromethyl)[4]radialenes was studied. When type II (all-Z) isomers of 5,6,7,8-tetraaryl-5,6,7,8-tetrakis(trifluoromethyl)[4]radialenes were heated in tetralin at 170-200 degrees C, isomerization occurred to give mixtures of four [4]radialenes in a ratio of ca. I:II:III:IV = 1:10:5:1. However, when the isomeric mixtures were heated in the solid state at the same temperature, selective isomerization took place to give type II isomers in good selectivity (>91%). Upon irradiation with light, the type II isomers first isomerized to mixtures of the four [4]radialene isomers (I:II:III:IV = 2:2:48:48) and then rearranged to cyclobuta[b]naphthalenes via a 6pi-electrocyclic reaction followed by 1,3-hydrogen migration.  相似文献   

6.
A convenient synthesis of alkyl substituted 2-pyrazolines (III) has been developed from the reaction of acids with hydrazones (I) and azines (IV). An alkylidenebis-1-methyl-2-alkylidene-hydrazine (V) was isolated as an intermediate, in the preparation of 5-isopropyl-1,4,4- trimethyl-2-pyrazoline (IIId), and protonated vinylhydrazones (II) are proposed as common intermediates in the formation of III, IV and V. The 4,5-dialkyl-2-pyrazolines (IIIk-m) that were prepared were shown to be free of isomers by nmr. The thermal isomerization of IIIk-m to 3,4-dialkyl-2-pyrazolines (IIIn-o) was found to be incomplete at the temperatures studied. The reaction of IIIn-o with acetone afforded 3,4-dialkyl-1-[2-(2-methyl-4-oxopentyl)]-2-pyrazolines (IIIp-q). The nmr and mass spectral data of III are discussed.  相似文献   

7.
A technique for separating methyl esters of monounsaturated fatty acids by argentation chromatography using silver nitrate-impregnated TLC plates is described. Monounsaturated fatty acid methyl esters are separated from polyunsaturated and saturated fatty acid methyl esters and the monounsaturated fatty methyl esters are resolved according to chain length. cis isomers are well resolved from the corresponding trans isomers. R(F) values for individual monounsaturated fatty acids are very reproducible. The potential of the technique in metabolic studies is demonstrated in the chain elongation of [14C]-18:1(n-9) and delta-9 desaturation of [14C]-18:0 by human skin fibroblasts. Recoveries of individual [14C]-fatty acids for scintillation counting exceed 94%.  相似文献   

8.
Reversed phase ion pair chromatography is a highly selective separation technique for the determination of free porphyrin carboxylic acids from human materials. Isocratic and gradient elution methods can be used to analyse porphyrin isomers and to establish porphyrin profiles for the biochemical diagnosis of porphyrias. Ion pair high performance liquid chromatography led to the discovery of the atypical isomers II and IV of uroporphyrin and coproporphyrin in human urine. Advantages and limitations of the ion pair technique are discussed.  相似文献   

9.
A rapid method was developed for the simultaneous profiling of 29 free fatty acids in plasma using ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/ESI-MS/MS). Barium acetate was used as the cationization agent in the positive ion mode for sensitive multiple reaction monitoring (MRM) experiments. The cis- and trans-C18:1 and -C18:2 isomers were baseline-separated using two tandem reversed-phase C18 UPLC columns, while identification of two pairs of positional isomers of C18:3 and C20:3 required isomer-specific product ions, as the analytes were not chromatographically resolved. The assay linearity was greater than three orders of magnitude and correlation coefficients were >0.99; the limits of detections were typically less than 0.2 microM. The method was successfully applied to plasma free fatty acid profiling of samples from volunteers who participated in a randomized crossover study involving the administration of either placebo or fish oil capsules. The results clearly indicate the ability to measure the time profiles of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma for the volunteers given fish oil capsules while the concentrations of the other free fatty acids and the total free fatty acid concentration in plasma remained virtually constant.  相似文献   

10.
The photochemical and photophysical properties of the three C121 isomers (I, II, III) were investigated with MADLI-TOF-MS, UV-vis spectra, fluorescence spectra, absorption spectra of their DMA complexes, and theoretical calculations. The three isomers of C121 (I, II, III) have different stabilities under laser irradiation, but isomer I and isomer II show good stability against the heat-induced conversion between different isomers: No conversion between the isomers was found after heating the mixture of isomer I and isomer II at 353 K for 12 h in Ar atmosphere. The results of UV-vis absorption and fluorescence spectra indicate that interactions between two C60 moieties of C60=C=C60 in the ground and singlet states are not significant, C121 (I, II, III) behaves as an electron-acceptor similar to C60. These indicate that the formation of the fullerene chain structure (e.g., C60=C=C60) does not disturb the photochemical and photophysical properties of the C60 monomer itself, even that the properties were enhanced by the formation of the polymer. This is significant for the C60 polymer in photochemical or photoelectronic applications in which C60=C=C60 can be an excellent basic unit of polymers.  相似文献   

11.
A high-resolution high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry method is described for the analysis of porphyrins in blood, urine and faeces. The gradient elution reversed-phase HPLC system using acetonitrile-methanol-1 m ammonium acetate/acetic acid buffer (pH 5.16) as gradient solvent mixtures was able to separate all porphyrin metabolites, including the type I and type III isomers of uroporphyrin, hepta-, hexa- and penta-carboxylic acid porphyrins and coproporphyrin. The porphyrins were positively identified by the protonated molecules [M+H](+) and further characterized by tandem mass spectrometric analysis with each porphyrin giving a characteristic collisioninduced dissociation product ion spectrum. The mass chromatograms obtained by HPLC/ESI MS are useful for the differential diagnosis of the porphyrias, since each type of porphyria has a typical porphyrin excretion pattern.  相似文献   

12.
5-vinylisoxazole     
Cycloaddition of fulminic acid to 1-butyn-3-ol gave a mixture of 5-α-hydroxyethylisoxazole (I) and 4-α-hydroxyethylisoxazole (II) in the ratio 9:1. By the dehydration of 1, 5-vinylisoxazole (III) was obtained. Compound III has also been prepared by cyclization of 4-penten-2-ynal as well as its diethylacetal with hydroxylamine hydrochloride; in both instances no isomers have been obtained. Compound III spontaneously polymerizes even at room temperature yielding a polymer still containing isoxazole rings.  相似文献   

13.
The synthesis of two naturally-occurring isomers of 3,4-dihydroxyproline is reported. l-2,3-cis-3,4-trans-3,4-Dihydroxyproline was synthesized from l-arabinose in 10 steps and 31% overall yield. The same series of reactions was employed to convert l-xylose to l-2,3-trans-3,4-trans-3,4-dihydroxyproline. Orthogonally protected versions of these amino acids were produced on gram scale, en route to the free amino acids, and these will serve as versatile intermediates in peptide synthesis. This synthetic strategy involved -Fmoc protection and protection of the C3 and C4 secondary alcohols as methoxyethoxymethyl (MEM) ethers.  相似文献   

14.
Both isomers of [(en)(2)Co(micro-NO(2))(micro-NH(2))Co(en)(2)](4+) synthesized by Alfred Werner in 1913 have been optically resolved and are therefore the classic inorganic analogues of the sugars threose and erythrose, rather than the rac- and meso-tartaric acids, as Werner believed. The nitro bridge is unsymmetrically N-O bonded, and each dinuclear ion is therefore asymmetric, a fact also clearly apparent in the (1)H and (13)C NMR spectra.  相似文献   

15.
Conjugated linoleic acids (CLA) are octadecadienoic acids (18:2) that have a conjugated double-bond system. Interest in these compounds has expanded since CLA were found to be associated with a number of physiological and pathological responses such as cancer, metastases, atherosclerosis, diabetes, immunity, and body fat/protein composition. The main sources of these conjugated fatty acids are dairy fats. Rumen bacteria convert polyunsaturated fatty acids, especially linoleic and linolenic acids, to CLA and numerous trans- containing mono- and diunsaturated fatty acids. It has been established that an additional route of CLA synthesis in ruminants and monogastric animals, including humans, occurs via delta9 desaturation of the trans-18:1 isomers. To date, a total of 6 positional CLA isomers have been found in dairy fats, each occurring in 4 geometric forms (cis,trans; trans,cis; cis,cis; and trans,trans) for a total of 24. All of these CLA isomers can be resolved only by a combination of gas chromatography (GC), using 100 m highly polar capillary columns, and silver-ion liquid chromatography, using 3 of these 25 cm columns in series. Complete analysis of all the trans-18:1 isomers requires prior isolation of trans monoenes by silver-ion thin-layer chromatography (TLC), followed by GC analysis using the same 100 m capillary columns operated at low temperatures starting from 120 degrees C. These analytical techniques are required to assess the purity of commercial CLA preparations, because their purity will affect the interpretation of any physiological and/or biochemical response obtained. Prior assessment of CLA preparations by TLC is also recommended to determine the presence of any other impurities. The availability of pure CLA isomers will permit the evaluation and analysis of individual CLA isomers for their nutritional and biological activity in model systems, animals, and humans. These techniques are also essential to evaluate dairy fats for their content of specific CLA isomers and to help design experimental diets to increase the level of the desired CLA isomers in dairy fats. These improved techniques are further required to evaluate the CLA profile in monogastric animals fed commercial CLA preparations for CLA enrichment of animal products. This is particularly important because absorption and metabolism will alter the ingested-CLA profile in the animal fed.  相似文献   

16.
An ultra high‐performance liquid chromatographic (UHPLC) system was developed and optimized for the separation of porphyrins of clinical interest. Optimum conditions for the simultaneous separation of uroporphyrin, hepta‐, hexa‐, penta‐carboxylic acid porphyrins and coproporphyrin and their type I and III isomers on a Thermo Hypersil BDS C18 column (2.4 µm particle size, 100 × 2.1 mm i.d.) using a gradient elution with 10% (v/v) acetonitrile in 1.0 m ammonium acetate buffer (pH 5.16) and 10% (v/v) acetonitrile in methanol at a flow‐rate of 0.4 mL/min. The effect of mobile phase buffer molarity on the sensitivity of fluorescence detection and resolution of porphyrin isomers was investigated. The method was successfully applied to the analysis of porphyrins extracted from the urine and faeces of patients with various human porphyrias. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Three isomers with the composition Sm@C(84) were isolated from carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3). These isomers were labeled Sm@C(84)(I), Sm@C(84)(II), and Sm@C(84)(III) in order of their elution times during chromatography on a Buckyprep column with toluene as the eluent. Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(II)(octaethylporphyrin) reveals the identities of two of the isomers: Sm@C(84)(I) is Sm@C(2)(13)-C(84), and Sm@C(84)(III) is Sm@ D(3d)(19)-C(84). Sm@C(84)(II) can be identified as Sm@C(2)(11)-C(84) on the basis of the similarity of its UV/vis/NIR spectrum with that of Yb@C(2)(11)-C(84), whose carbon cage has been characterized by (13)C NMR spectroscopy. Comparison of the three Sm@C(84) isomers identified in this project with two prior reports of the preparation and isolation of isomers of Sm@C(84) indicate that five different Sm@C(84) isomers have been found and that the source of samarium used for the generation of fullerene soot is important in determining which of these isomers form.  相似文献   

18.
Rapid gradient RP-HPLC method with fluorimetric detection for trace analysis of diagnostically significant porphyrins in human urine was developed for clinical and diagnostic purposes. Results show that optimized high-pressure gradient elution and monolithic column Chromolith SpeedRod RP18e enabled separation of seven urine porphyrins including baseline separation of I and III positional isomers of uro- and coproporphyrins within 3.2 min. Problems associated with high metal cation complexing ability of the analytes and common stainless steel based instrumentation were substantially reduced by use of 0.1 mol/l ammonium citrate buffer (pH 5.47) and methanol as a mobile phase components. Good reproducibilities of retention times (within +/- 0.36% RSD) and peak areas (from +/- 0.6 to +/- 2.5% RSD) at 5-20 microg/l level of the analytes were achieved. Determined LOQ (10 x S/N) values of diagnostically important porphyrins using fluorimetric detection (ex.405 nm/em.620 nm) were 82 pmol/l (65 ng/l, 1.30 pg/injection) for uroporphyrin I, 44 pmol/l (33 ng/l, 0.66 pg/injection) for uroporphyrin III, 50 pmol/l (40 ng/l, 0.80 pg/injection) for coproporphyrin I and 47 pmol/l (39 ng/l, 0.78 pg/injection) for coproporphyrin III. Attained LOQ concentration level is approximately 20-120 times lower than concentration of porphyrins in a urine of healthy person. Calculated LOD's (3 x S/N) were at a low ng/l levels, what enabled quantification of carry-over effect to be from 2.0% to 0.2% in each of three consecutive blank runs and from 2.5% to 7% in total after injection of mixed standard of porphyrins with 5-20 microg/l concentrations. Recovery of porphyrins at low microg/l concentration levels was from 93% to 97.5%. Devised method increases productivity of clinical laboratory from 2 to 10 times in dependence of duration of currently used method.  相似文献   

19.
This study examines the effect of the column operating temperature of 100 m SP-2560 and CP-Sil 88 capillary gas chromatographic (GC) columns on the separation of cis- and trans-octadecenoic (18:1) isomers in partially hydrogenated vegetable oils. The overlapping GC peaks were measured at column isothermal temperatures of 170, 175, 180, 185, and 190 degrees C. With both columns, isothermal operation at 180 degrees C produced the fewest overlapping peaks of the cis and trans isomers. At this temperature, all trans-18:1 isomers, except 13t-18:1 (t = trans), 14t-18:1, and 15t-18:1 isomers were resolved from the cis-18:1 isomers. The peaks of the 13t-18:1 and 14t-18:1 isomer pair, which always elute together, overlapped peaks of the 6c-18:1 (c = cis), 7c-18:1, and 8c-18:1 isomers; the peak of the 15t-18:1 isomer overlapped the major cis-18:1 peak, which was mainly due to 9c-18:1. Isothermal operations above or below 180 degrees C produced some additional overlapping problems. At 185 and 190 degrees C, the peaks of the 16t-18:1 and 13c-18:1 isomers overlapped. At 175 and 170 degrees C, the 16t-18:1 peak overlapped the 14c-18:1 peak, and the peaks of the 13t + 14t-18:1 isomer pair partially overlapped the major cis-18:1 peak. The separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers was also affected by the column operating temperature. Isothermal operation of the SP-2560 column at 180 degrees C produced a baseline separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers, whereas with the CP-Sil 88 column the best resolution was obtained at 170 degrees C. The results of this study show that the SP-2560 capillary column has a slight advantage over the CP-Sil 88 column for the simultaneous resolution of all the fatty acids generally found in partially hydrogenated vegetable oils.  相似文献   

20.
A method is described for the simultaneous determination of major bile acids by high-performance liquid chromatography without prior hydrolysis. A mixture of bile acids is divided into the free, glyco- and tauro-conjugate groups by thin-layer chromatography. Separation of each group into cholate, ursodeoxycholate, chenodeoxycholate, deoxycholate and lithocholate is attained in two stages on a muBondapak C18 column; first, 0.3% ammonium carbonate-acetonitrile (9:4) is used as a mobile phase for the separation of the last three compounds. Subsequently cholate and ursodeoxycholate are resolved by chromatography in 0.3% ammonium carbonate-acetonitrile (11:4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号