首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas-phase thermal isomerization of N-propylidenecyclopropylamine has been studied in the temerature range of 573° to 635°K. The reaction is homogeneous and kinetically first order and yields 5-ethyl-1-pyrroline as the sole product. The rate constants are independent of pressure in the range of 2.5 to 55 torr and fit the Arrhenius relationship log k(sec?1) = (14.05 ± 0.06) - (47.77 ± 0.16)/θ where θ = 2.303 RT in units of kcal/mole, or log k(sec?1) = (14.05 ± 0.06) - (199.9 ± 0.7)/θ, where θ = 2.303RT in kJ/mole. From considerations of a biradical pathway it is concluded that the resonance stabilization energy of the substituted 2-aza-allyl radical is very similar to that of the methallyl radical.  相似文献   

2.
The gas-phase elimination of several polar substituents at the α carbon of ethyl acetates has been studied in a static system over the temperature range of 310–410°C and the pressure range of 39–313 torr. These reactions are homogeneous in both clean and seasoned vessels, follow a first-order rate law, and are unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: 2-acetoxypropionitrile, log k1 (s?1) = (12.88 ± 0.29) – (203.3 ± 2.6) kJ/mol (2.303RT)?1; for 3-acetoxy-2-butanone, log ±1(s?1) = (13.40 ± 0.20) – (202.8 ± 2.4) kJ/mol (2.303RT)?1; for 1,1,1-trichloro-2-acetoxypropane, log ?1 (s?1) = (12.12 ± 0.50) – (193.7 ± 6.0) kJ/mol (2.303RT)?; for methyl 2-acetoxypropionate, log ?1 (s?1) = (13.45 ± 0.05) – (209.5 ± 0.5) kJ/mol (2.303RT)?1; for 1-chloro-2-acetoxypropane, log ?1 (s?1) = (12.95 ± 0.15) – (197.5 ± 1.8) kJ/mol (2.303RT)?1; for 1-fluoro-2-acetoxypropane, log ?1 (s?1) = (12.83 ± 0.15)– (197.8 ± 1.8) kJ/mol (2.303RT)?1; for 1-dimethylamino-2-acetoxypropane, log ?1 (s?1) = (12.66 ± 0.22) –(185.9 ± 2.5) kJ/mol (2.303RT)?1; for 1-phenyl-2-acetoxypropane, log ?1 (s?1) = (12.53 ± 0.20) – (180.1 ± 2.3) kJ/mol (2.303RT)?1; and for 1-phenyl?3?acetoxybutane, log ?1 (s?1) = (12.33 ± 0.25) – (179.8 ± 2.9) kJ/mol (2.303RT)?1. The Cα? O bond polarization appears to be the rate-determining process in the transmition state of these pyrolysis reactions. Linear correlations of electron-releasing and electron-withdrawing groups along strong σ bonds have been projected and discussed. The present work may provide a general view on the effect of alkyl and polar substituents at the Cα? O bond in the gas-phase elimination of secondary acetates.  相似文献   

3.
The rates of elimination of 5-chloropentan-2-one and 4-chloro-1-phenylbutan-1-one in the gas phase have been determined in a static system, seasoned with allyl bromide, and in the presence of the chain inhibitor propene. The reactions are unimolecular and follow a first-order rate law. The working temperature and pressure ranges were 339.4–401.1°C and 46–117 torr, respectively. The rate coefficients for the homogeneous reactions are given by the following Arrhenius equations: for 5-chloropentan-2-one, log k1(s?1) = (13.12 ± 0.88) - (207.8 ± 11.0)kJ/mol/2.303RT; and for 4-chloro-1-phenylbutan-1-one, log k1(s?1) = (12.28 ± 1.09) - (185.2 ± 12.0)kJ/mol/2.303RT. The carbonyl group at the γ position of the C? Cl bond of haloketones apparently participates in the rate of pyrolysis. The five-membered conformation appears to be a favorable structure for anchimeric assistance of the C?O group in the gas-phase elimination of chloroketones.  相似文献   

4.
The gas phase elimination of 4-(methylthio)-1-butyl acetate and 1-chloro-4-(methylthio)-butane has been investigated in a seasoned, static reaction vessel over the temperature range of 310–410°C and the pressure range of 46–193 Torr. The presence of the inhibitors propene, cyclohexene, and/or toluene had no effect on the rates. The reactions are homogeneous, unimolecular, and obey a first-order rate law. The rate coefficients are given by the following Arrhenius equations: for 4-(methylthio)-1-butyl acetate, log k1(s?1) = (12.32 ± 0.29) ? (192.1 ± 3.6) kJ/mol/2.303RT; for 1-chloro-4-(methylthio)-butane, log k1(s?1) = (12.23 ± 0.59) ? (175.7 ± 6.8) kJ/mol/2.303RT. The CH3S substituent in 1-chloro-4-(methylthio)-butane has been found to participate in the elimination reaction, where tetrahydrothiophene and methyl chloride formation may result from an intimate ion-pair type of mechanism. The yield of a cyclic product in gas phase reactions provides additional evidence of an intimate ion pair mechanism through neighboring group participation in gas phase elimination of special types of organic halides.  相似文献   

5.
Quantitative analysis of the products formed in 1,1′-azoisobutane pyrolyses in the temperature range of 553°–602°K has shown that the major reactions of the iso-butyl radical are Analysis of initial rate data gave log10k4/(kc)1/2(cm?3/2.mol 1/2.sec?1/2) = 7.54±0.44 ? (136.5 + 4.8) kJ/mol/2.303RT, the Arrhenius parameters obtained being in good agreement with thermodynamic data for reaction (4). Measured values of ka/(kc)1/2 where ka is the rate constant of the reaction iC4H9 + AIB → iC4H10 +. AIB were consistent with published parameters determined by photolysis of 1,1′-azoisobutane. Combination of photolysis and pyrolysis data gave log10 ka/(kc)1/2(cm3/2.mol?1/22.sec?1/2) = 3.68 ± 0.15 ? (27.2 ± 1.2) kJ/mol/2.303RT. The crosscombination ratio for methyl and iso-butyl radicals has been found to be 0.25, indicating that the geometric mean rule does not hold for methyl and iso-butyl radicals.  相似文献   

6.
The pyrolysis kinetics of several ethyl esters with polar substituents at the acyl carbon have been studied in the temperature range of 319.8–400.0°C and pressure range of 50.5–178.0 torr. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are given by the Arrhenius equations: for ethyl glycolate, log k1 (s?1) = (12.75 ± 0.30) – (201.4 ± 3.8) kJ/mol/2.303RT; for ethyl cyanoacetate, log k1 (s?1) = (12.19 ± 0.18) – (191.8 ± 2.1) kJ/mol/2.303RT; for ethyl dichloroacetate, log k1 (s?1) = (12.62 ± 0.36) – (193.9 ± 4.3) kJ/mol/2.303RT; for ethyl trichloroacetate, log k1 (s?1) = (12.27 ± 0.09) – (185.1 ± 1.0) kJ/mol/2.303RT. The results of the present work together with those reported recently in the literature give an approximate linear correlation when plotting log k/k0 vs. σ* values (ρ* = 0.315 ± 0.004, r = 0.976, and intercept = 0.032 ± 0.006 at 400°C). This linear relationship indicates that the polar substituents affect the rate of elimination by electronic factors. The greater the electronegative nature of the polar substituent, the faster is the pyrolysis rate. The alkyl substituents yield, within experimental error, similar values in rates which makes difficult an adequate assessment of their real influence.  相似文献   

7.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

8.
The gas-phase elimination of ethyl 3-methylbutanoate and ethyl 3,3-dimethylbutanoate has been studied, in a static system, over the temperature range of 360–420°C and in the pressure range of 71–286 torr. The reactions are homogeneous, unimolecular, and follow a first-order rate law. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for ethyl 3-methylbutanoate, log k1 (s?1) = (12.70 ± 0.36) – (202.5 ± 4.4) kJ/mol/2.303RT, and for ethyl 3,3-dimethylbutanoate, log k1 (s?1) = (13.04 ± 0.08) – (207.1 ± 1.0) kJ/mol/2.303RT. Alkyl substituents at the acyl carbon of ethyl esters yield very close values in rates. Consequently it is rather difficult to offer some conclusion concerning the effect of these substituents.  相似文献   

9.
2‐Phenylethanol, racemic 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol have been pyrolyzed in a static system over the temperature range 449.3–490.6°C and pressure range 65–198 torr. The decomposition reactions of these alcohols in seasoned vessels are homogeneous, unimolecular, and follow a first‐order rate law. The Arrhenius equations for the overall decomposition and partial rates of products formation were found as follows: for 2‐phenylethanol, overall rate log k1(s−1)=12.43−228.1 kJ mol−1 (2.303 RT)−1, toluene formation log k1(s−1)=12.97−249.2 kJ mol−1 (2.303 RT)−1, styrene formation log k1(s−1)=12.40−229.2 kJ mol−1(2.303 RT)−1, ethylbenzene formation log k1(s−1)=12.96−253.2 kJ mol−1(2.303 RT)−1; for 1‐phenyl‐2‐propanol, overall rate log k1(s−1)=13.03−233.5 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=13.04−240.1 kJ mol−1(2.303 RT)−1, unsaturated hydrocarbons+indene formation log k1(s−1)=12.19−224.3 kJ mol−1(2.303 RT)−1; for 2‐methyl‐1‐phenyl‐2‐propanol, overall rate log k1(s−1)=12.68−222.1 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=12.65−222.9 kJ mol−1(2.303 RT)−1, phenylpropenes formation log k1(s−1)=12.27−226.2 kJ mol−1(2.303 RT)−1. The overall decomposition rates of the 2‐hydroxyalkylbenzenes show a small but significant increase from primary to tertiary alcohol reactant. Two competitive eliminations are shown by each of the substrates: the dehydration process tends to decrease in relative importance from the primary to the tertiary alcohol substrate, while toluene formation increases. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 401–407, 1999  相似文献   

10.
The kinetics of the gas-phase elimination of several chloroesters were determined in a static system over the temperature range of 410–490°C and the pressure range of 47–236 torr. The reactions in seasoned vessels, and in the presence of a free-radical inhibitor, are homogeneous, unimolecular, and follow a first-order law. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for methyl 3-chloropropionate, log k1(s?1) = (13.22 ± 0.07) - (231.5 ± 1.0) kJ/mol/2.303RT; for methyl 4-chlorobutyrate, log k1(s?1) = (13.31 ± 0.25) - (221.5 ± 3.4) kJ/mol/2.303RT; and for methyl 5-chlorovalerate, log k1(s?1) = (13.12 ± 0.25) - (221.7 ± 3.2) kJ/mol/2.303RT. Rate enhancements and lactone formation reveal the participation of carbonyl oxygen of the carbomethoxy group. The order COOCH3-5 > COOCH3-6 > COOCH3-4 in assistance is similar to the sequence of group participation in solvolysis reactions. The partial rates for the parallel eliminations to normal dehydrohalogenation products and lactones have been estimated and reported. The present results lead us to consider that an intimate ion-pair mechanism through participation of the carbomethoxy group may well be operating in some of these reactions.  相似文献   

11.
The gas‐phase elimination of phenyl chloroformate gives chlorobenzene, 2‐chlorophenol, CO2, and CO, whereasp‐tolyl chloroformate produces p‐chlorotoluene and 2‐chloro‐4‐methylphenol CO2 and CO. The kinetic determination of phenyl chloroformate (440–480oC, 60–110 Torr) and p‐tolyl chloroformate (430–480°C, 60–137 Torr) carried out in a deactivated static vessel, with the free radical inhibitor toluene always present, is homogeneous, unimolecular and follows a first‐order rate law. The rate coefficient is expressed by the following Arrhenius equations: Phenyl chloroformate: Formation of chlorobenzene, log kI = (14.85 ± 0.38) (260.4 ± 5.4) kJ mol?1 (2.303RT)?1; r = 0.9993 Formation of 2‐chlorophenol, log kII = (12.76 ± 0.40) – (237.4 ± 5.6) kJ mol?1(2.303RT)?1; r = 0.9993 p‐Tolyl chloroformate: Formation of p‐chlorotoluene: log kI = (14.35 ± 0.28) – (252.0 ± 1.5) kJ mol–1 (2.303RT)?1; r = 0.9993 Formation of 2‐chloro‐4‐methylphenol, log kII = (12.81 ± 0.16) – (222.2 ± 0.9) kJ mol?1(2.303RT)–1; r = 0.9995 The estimation of the kI values, which is the decarboxylation process in both substrates, suggests a mechanism involving an intramolecular nucleophilic displacement of the chlorine atom through a semipolar, concerted four‐membered cyclic transition state structure; whereas the kII values, the decarbonylation in both substrates, imply an unusual migration of the chlorine atom to the aromatic ring through a semipolar, concerted five‐membered cyclic transition state type of mechanism. The bond polarization of the C–Cl, in the sense Cδ+ … Clδ?, appears to be the rate‐determining step of these elimination reactions.  相似文献   

12.
The pyrolysis kinetics of primary, secondary, and tertiary β-hydroxy ketones have been studied in static seasoned vessels over the pressure range of 21–152 torr and the temperature range of 190°–260°C. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are expressed by the following equations: for 1-hydroxy-3-butanone, log k1(s?1) = (12.18 ± 0.39) ? (150.0 ± 3.9) kJ mol?1 (2.303RT)?1; for 4-hydroxy-2-pentanone, log k1(s?1) = (11.64 ± 0.28) ? (142.1 ± 2.7) kJ mol?1 (2.303RT)?1; and for 4-hydroxy-4-methyl-2-pentanone, log k1(s?1) = (11.36 ± 0.52) ? (133.4 ± 4.9) kJ mol?1 (2.303RT)?1. The acid nature of the hydroxyl hydrogen is not determinant in rate enhancement, but important in assistance during elimination. However, methyl substitution at the hydroxyl carbon causes a small but significant increase in rates and, thus, appears to be the limiting factor in a retroaldol type of mechanism in these decompositions. © John Wiley & Sons, Inc.  相似文献   

13.
The kinetics of the gas phase pyrolyses of methyl 2-bromopropionate and 2-bromopropionic acid were studied in a seasoned, static reaction vessel and under maximum inhibition of the free radical suppressor toluene. The working temperature and pressure range was 310–430°C and 26.5–201.5 torr, respectively. The reactions proved to be homogeneous, unimolecular, and obeys a first-order rate law. The rate coefficients are expressible by the following equations: for methyl 2-bromopropionate, log k1(s?1) = (13.10 ± 0.34) ? (211.4 ± 4.4)kJ mol?1(2.303RT)?1; for 2-bromopropionic acid, log k1(s?1) = (12.41 ± 0.29) ? (180.3 ± 3.4)kJ mol?1(2.303RT)?1. The bromoacid yields acetaldehyde, CO and HBr. Because of this result, the mechanism is believed to proceed via a polar five-membered cyclic transition state.  相似文献   

14.
The thermal unimolecular decomposition of three vinylethers has been studied in a VLPP apparatus. The high-pressure rate constant for the retro-ene reaction of ethylvinylether was fit by log k (sec?1) = (11.47 + 0.25) - (43.4 ± 1.0)/2.303 RT at <T> = 900 K and that of t - butylvinylether by log k (sec?1) = (12.00 ± 0.27) - (38.4 ± 1.0)/2.303 RT at <T> = 800 K. No evidence for the competition of the higher energy homolytic bond-fission process could be obtained from the experimental data. The rate constant compatible with the C? O bond scission reaction in the case of benzylvinylether was log k (sec?1) = (16.63 ± 0.30) - (53.74 ± 1.0)/2.303 RT at <T> = 750 K. Together with ΔHf,3000(benzyl·) = 47.0 kcal/mol, the activation energy for this reaction results in ΔHf,3000(CH2CHO) = +3.0 ± 2.0 kcal/mol and a corresponding resonance stabilization energy of 3.2 ± 2.0 kcal/mol for 2-ethanalyl radical.  相似文献   

15.
The elimination kinetics of the title compounds were carried out in a static system over the temperature range of 290–330°C and pressure range of 29.5–124 torr. The reactions, carried out in seasoned vessels with allyl bromide, obey first-order rate law, are homogeneous and unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-buten-1-methanesulphonate, log k1(s?1) = (12.95 ± 0.53) ? (175.3 ± 5.9)kJ mol?1(2.303RT)?1; and for 3-methyl-3-buten-1-methanesulphonate, log k1(s?1) = (12.98 ± 0.40) ? (174.7 ± 4.5)kJ mol?1(2.303RT)?1. The olefinic double bond appears to assist in the rate of pyrolysis. The mechanism is described in terms of an intimate ion-pair intermediate. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
The gas phase elimination of methyl 4-chlorobutyrate and methyl 5-chlorovalerate has been reexamined, in a static system and seasoned vessel, over the temperature range of 419.6–472.1°C and pressure range of 45–108 torr. The reactions, under maximum inhibition with propene, are homogeneous, unimolecular, and obey a first-order rate law. The rate coefficients are given by the following Arrhenius equations: for methyl 4-chlorobutyrate, log (k1(s?1) = (13.41 ± 0.60) - (226.8 ± 8.2) kJ/mol/2.303RT; and for methyl 5-chlorovalerate, log k1(s?1) = (13.20 ± 0.02) - (227.6 ± 0.3) kJ / mol / 2.303RT. The pyrolysis rates are found to be about a half of the rates reported in a previous work. As already advanced, the carbomethoxy substituent appears to provide anchimeric assistance in the elimination process, where normal dehydrochlorination and lactone formation arise from an intimate ion pair type mechanism. The partial rates towards each of these products have been determined and reported.  相似文献   

18.
The gas-phase eliminations of several tert-butyl esters, in a static system and in vessels seasoned with allyl bromide, have been studied in the temperature range of 171.5–280.1°C and the pressure range of 23–98 torr. The rate coefficients for the homogeneous unimolecular elimination of these esters are given by the following Arrhenius equations: for tert-butyl pivalate, log k1(s?1) = (13.44 ± 0.30) ? (169.1 ± 3.1) kJ · mol?1 (2.303RT)?1; for tert-butyl trichloroacetate, log k1(s?1) = (12.41 ± 0.08) ? (141.1 ± 0.7) kJ · mol?1 (2.303RT)?1; and for tert-butyl cyanoacetate log k1(s?1) = (11.31 ± 0.44) ? (137.8 ± 4.1) kJ · mol?1 (2.303RT)?1. The data of this work together with those reported in the literature yield a good linear relationship when plotting log k/k0 vs. σ* values (ρ* = 0.635, correlation coefficient r = 0.972, and intercept = 0.048 at 250°C). The positive ρ* value suggests that the movement of negative charge to the acyl carbon in the transition state is rate determining. The present results along with previous investigations ratify the generalization that electron-withdrawing substituents at the acyl side of ethyl, isopropyl, and tert-butyl esters enhance the elimination rates, while electron-releasing groups tend to reduce them. The negative nature of the acyl carbon and the polarity in the transition state increases slightly from primary to tertiary esters.  相似文献   

19.
The rate coefficients for the gas-phase pyrolyses of a series of structurally related secondary acetates have been measured in a static system over the temperature range of 289.1–359.5°C and the pressure range 50.0–203.0 torr. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-hexyl acetate, log k1 (s?) = (12.12 ± 0.33) ? (176.1 ± 3.9)kJ/mol/2.203RT; for 5-methyl-3-hexyl acetate, log k1 (s?) = (13.17 ± 0.20) ? (186.2 ± 2.3)kJ/mol/2.303RT; and for 5,5-dimethyl-3-hexyl acetate, log k1 (s?) = (12.70 ± 0.19) ? (177.4 ± 2.2)kJ/mol/2.303RT. The direction of elimination of these esters has shown from the invariability of olefin distributions at different temperatures and percentages of decomposition that steric hindrance is a determining factor in the eclipsed cis conformation. Moreover, a more detailed analysis indicates that the greater the alkyl–alkyl interaction, the less favored the elimination tends to be. Otherwise, an increase of alkyl–hydrogen interaction caused steric acceleration to be the determining factor.  相似文献   

20.
The spectrophotometric determination of the rate of pyrolysis of 1,2-diiodoethylene from 305.8 to 435.0° (with additional data on the addition of iodine to acetylene from 198.1 to 331.6°) has resulted in the observation of both a (in part heterogeneous) unimolecular process (A), and an iodine atom catalyzed process (B). For the homogeneous unimolecular process, log (kA/sec?1) ≈ 12.5–46/θ would appear to be reasonable, while log (kB/M?1 sec?1) = 11.8–23.9/θ, where θ = 2.303RT in kcal/mole. It is suggested that a donor–acceptor complex intermediate may explain the observed rate constant of process B and analogous reactions in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号