首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile click chemistry method of immobilizing surface‐functionalized polymer vesicles on casted polymeric PAN substrates is described. Microporous PAN membranes were subjected to hydrochloric acid hydrolysis to obtain surface carboxylates. The carboxylic groups were activated with EDC/NHS‐solution and were then reacted with propargylamine to introduce alkyne groups for CuAAC reactions. The alkyne functionality of the modified membrane surface was verified by reaction with an azide functional click dye both before and after the immobilization of azide‐functionalized ABA vesicles. The efficient postfunctionalization of the membrane with alkyne allowed quantitative coverage of the membrane surface with a polymersome monolayer, as confirmed by immobilization of polymerzomes loaded with a fluorescent dye. Polymersome monolayers immobilized on alkyne functionalized PAN‐membranes were characterized by cryo‐SEM and monolayers were confirmed by atom force microscopy. These methods opens up new avenues for preparing membrane based filtration and sensor technologies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2032–2039  相似文献   

2.
We present herein a versatile method for grafting polymer brushes to passivated silicon surfaces based on the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry) of omega-azido polymers and alkynyl-functionalized silicon substrates. First, the "passivation" of the silicon substrates toward polymer adsorption was performed by the deposition of an alkyne functionalized self-assembled monolayer (SAM). Then, three tailor-made omega-azido linear brush precursors, i.e., PEG-N3, PMMA-N3, and PS-N3 (Mn approximately 20,000 g/mol), were grafted to alkyne-functionalized SAMs via click chemistry in tetrahydrofuran. The SAM, PEG, PMMA, and PS layers were characterized by ellipsometry, scanning probe microscopy, and water contact angle measurements. Results have shown that the grafting process follows the scaling laws developed for polymer brushes, with a significant dependence over the weight fraction of polymer in the grafting solution and the grafting time. The chemical nature of the brushes has only a weak influence on the click chemistry grafting reaction and morphologies observed, yielding polymer brushes with thickness of ca. 6 nm and grafting densities of ca. 0.2 chains/nm2. The examples developed herein have shown that this highly versatile and tunable approach can be extended to the grafting of a wide range of polymer (pseudo-) brushes to silicon substrates without changing the tethering strategy.  相似文献   

3.
陈勇 《高分子科学》2010,28(6):895-902
<正>A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.  相似文献   

4.
The facile synthesis of 3-miktoarm star polymers and 1st generation mikto polymeric dendrimers using atom transfer radical polymerization (ATRP) and "click" chemistry is demonstrated. ATRP was used to synthesize near uniform polymers with Br chain ends, which were easily converted into azido groups. These polymer chains were then attached to a trifunctional alkyne molecule (tripropargylamine) using click reactions in a variety of ways to make the miktoarm stars and miktoarm polymeric dendrimers.  相似文献   

5.
Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for "click" chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using "click" chemistry, and grafting densities in the range of 0.007-0.95 chains nm(-2) were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm(-3). The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.  相似文献   

6.
Herein we report the topochemical modification of polymer surfaces with perfluorinated aromatic azides. The aryl azides, which have quaternary amine or aldehyde functional groups, were linked to the surface of the polymer by UV irradiation. The polymer substrates used in this study were cyclic olefin copolymer and poly(methyl methacrylate). These substrates were characterized before and after modification using reflection-absorption infrared spectroscopy, sessile water contact angle measurements, and X-ray photoelectron spectroscopy. Analysis of the surface confirmed the presence of aromatic groups with aldehyde or quaternary amine functionality. Enzyme immobilization and patterning onto polymer surfaces were studied using confocal microscopy. Enzymatic digests of protein were carried out on modified probes manufactured from thermoplastic substrates, and the resulting peptide analysis was completed using matrix-assisted laser desorption/ionization mass spectrometry. The use of functionalized perfluorinated aromatic azides allows the surface chemistry of thermoplastics to be tailored for specific lab-on-a-chip applications.  相似文献   

7.
In this study, click chemistry was proposed as a tool for tuning the surface hydrophilicity of monodisperse-macroporous particles in micron-size range. The monodisperse-porous particles carrying hydrophobic or hydrophilic molecular brushes on their surfaces were obtained by the proposed modification. Hydrophilic poly(glycidyl methacrylate-co-ethylene dimethacrylate), poly(GMA-co-EDM) particles were hydrophobized by the covalent attachment of poly(octadecyl acrylate-co-propargyl acrylate), poly(ODA-co-PA) copolymer onto the particle surface via triazole formation by click chemistry. In the second part, Hydrophobic poly(4-chloromethylstyrene-co-divinylbenzene), poly(CMS-co-DVB) particles were hydrophilized by the covalent attachment of poly(vinyl alcohol), PVA onto their surface also via triazole formation by click chemistry. The presence of PVA and poly(ODA-co-PA) copolymer on the corresponding particles was shown by FTIR-DRS. After click-coupling reactions applied for both hydrophobic poly(CMS-co-DVB) and hydrophilic poly(GMA-co-EDM) particles, the marked changes in surface polarity were shown by contact angle measurements. Protein adsorption characteristics of plain and modified particles were investigated for both materials. In the isoelectric point of albumin, the non-specific albumin adsorption decreased from 225 to 80 mg/g by grafting PVA onto the poly(CMS-co-DVB) beads. On the other hand, the non-specific albumin adsorption onto the plain poly(GMA-co-EDM) beads increased from 50 to 400 mg/g by the covalent attachment of poly(ODA-co-PA) copolymer onto the bead-surface via click chemistry. The protein adsorption behavior was efficiently regulated by the covalent attachment of appropriate molecular brushes onto the surfaces of selected particles. The results indicated that "click chemistry" was an efficient tool for controlling the polarity of monodisperse-macroporous particles.  相似文献   

8.
Triazole formation via 1,3-dipolar cycloaddition, or "click" chemistry, is a powerful synthetic method for incorporating chemical functionality onto the surfaces of Au nanoparticles. To investigate the factors that govern azide/alkyne reactivity at particle surfaces, we measured the general kinetic trends for the uncatalyzed reaction using FTIR spectroscopy. This study examines the roles of ligand length, electronic substitution of the alkyne species, and solvent on the reaction under pseudo-first-order conditions. The conversion of azide to triazole is found to depend more strongly on the relative surface coverage of azide terminated alkanethiol than on the ligand length and solvent.  相似文献   

9.
A diblock copolymer consisting of poly(3-(triethoxysilyl)propylisocyanate) (PIC) and polystyrene(PS) was synthesized by anionic polymerization. A polymeric monolayer of the block copolymer was formed on silica substrates by various grafting techniques such as immersion, casting, or contact-printing. The PIC block adheres covalently to Si substrates in an in-plane fashion due to its extended rodlike conformation and reactivity to the silica. The polystyrene blocks aggregate to form mounds on the surface resulting in a new type of nanopatterned polymer brush. The self-limiting adsorption of the rod coils results in a thickness of about 5 nm regardless of the solution concentration and coating method. This particular property allowed microcontact printing directly onto silicon or glass substrates. The resulting surface morphology consisted of nanoscale domains given by the block copolymer and uniform thickness micropatterns transferred from the stamp within the printed area. This study offers a simple new method to prepare a covalent polymeric monolayer with nano- and micropatterns, which can be performed directly onto various silicon-based substrates.  相似文献   

10.
The electroreduction of functionalized aryldiazonium salts combined with a protection-deprotection method was evaluated for the fabrication of organized mixed layers covalently bound onto carbon substrates. The first modification consists of the grafting of a protected 4-((triisopropylsilyl)ethynyl)benzene layer onto the carbon surface on which the introduction of a second functional group is possible without altering the first grafted functional group. After deprotection, we obtained an ultrathin robust layer presenting high densities of both active ethynylbenzene groups (available for "click" chemistry) and the second functional group. The strategy was successfully demonstrated using azidomethylferrocene to react with ethynyl moieties in the binary film by "click" chemistry, and NO(2)-phenyl as the second functional group. Two possible modification pathways with different orderings of the various steps were considered to show the influence and importance of the protection-deprotection process on the final surface obtained. Using mild conditions for the grafting of the second layer maintains a concentration of active ethynyl groups similar to that obtained for a one-component monolayer while achieving a high surface concentration of the second modifier. Considering the wide range of functional aryldiazonium salts that could be electrodeposited onto carbon surfaces and the versatility and specificity of the "click" chemistry, this approach appears very promising for the preparation of mixed layers in well-controlled conditions without altering the reactivity of either functional group.  相似文献   

11.
The review provides the first generalized and systematized information on the use of click reactions in chitosan chemistry for the preparation of novel polymers with attractive physicochemical and biological properties. The reactions of copper-catalyzed azide—alkyne cycloaddition and the click reactions of chitosan derivatives occurring in the absence of salts or metal complexes are discussed in detail. The data on the pre-click modification of chito-san (i.e., the introduction of azide function, alkyne fragment, highly dipolarophilic moieties, and thiol group into the polymer) are reviewed. Special attention is given to the application of new chitosan derivatives obtained by click modification.  相似文献   

12.
We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces.  相似文献   

13.
A new format of polymer support having cross-linked polymeric micro- and nanoarrays has been fabricated via reactive reversal nanoimprint lithography. Reactive reversal nanoimprint lithography is a relatively simple method to imprint highly cross-linked and chemically tunable polymers. An array of chloromethyl-functionalized cross-linked polystyrene has been imprinted on hard (silicon) and soft (polymer) substrates, and a model esterification reaction is demonstrated. The imprints have been found to be relatively stable under both static and dynamic stability tests carried out in various organic solvents. The chemical functionality is evenly distributed over the imprinted array. This method of fabricating polymer supports offers a high degree of freedom in terms of the choice of chemical functionality, the types of polymer matrix, and the size of the polymer support. The functional polymer support has potential applications for chemical and biological assays.  相似文献   

14.
The synthesis of novel well-defined alkyne side chain functional polymers featuring narrow molecular weight distributions (PDI = 1.09-1.17) by living radical polymerization is described. Grafting of protected and unprotected carbohydrates is achieved via either a C-6 or an anomeric azide (alpha or beta) onto these polymers by Cu(I)-catalyzed "click chemistry", providing a simple and efficient route to synthetic glycopolymers. The strategy provides an extremely powerful tool for the synthesis of libraries of materials that differ only in the nature of the sugar moiety presented on a well-defined polymer scaffold. A library of multivalent ligands were then prepared following a "coclicking" synthetic protocol, and the reactivity of these glycopolymers in the presence of concanavalin A and Ricinus communis agglutinin, model lectins able to selectively bind appropriate mannose and galactose derivatives, respectively, was assessed.  相似文献   

15.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

16.
The double click reactions (Cu catalyzed Huisgen and Diels–Alder reactions) were used as a new strategy for the preparation of well‐defined heterograft copolymers in one‐pot technique. The synthetic strategy to the various stages of this work is outlined: (i) preparing random copolymers of styrene (St) and p‐chloromethylstyrene (CMS) (which is a functionalizable monomer) via nitroxide mediated radical polymerization (NMP); (ii) attachment of anthracene functionality to the preformed copolymer by the o‐etherification procedure and then conversion of the remaining ? CH2Cl into azide functionality; (iii) by using double click reactions in one‐pot technique, maleimide end‐functionalized poly(methyl methacrylate) (PMMA‐MI) via atom transfer radical polymerization (ATRP) of MMA and alkyne end‐functionalized poly (ethylene glycol) (PEG‐alkyne) were introduced onto the copolymer bearing pendant anthryl and azide moieties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6969–6977, 2008  相似文献   

17.
Click‐active surfaces patterned at 200 nm resolution are demonstrated using the dual functional polymeric film, poly(propargyl methacrylate) (PPMA). The commercially available monomer of propargyl methacrylate (PMA) is polymerized in a single step by initiated chemical vapor deposition (iCVD). FT‐IR and X‐ray photoelectron spectroscopy confirm retention of the click‐active acetylene functional group in the bulk and surface of the iCVD film, respectively. Treating substrates with silane coupling agents prior to deposition results in grafting of iCVD PPMA polymers onto various inorganic surfaces. This grafting technique provides the chemical and mechanical stability required for the PPMA layer to survive the subsequent wet chemical steps used for click functionalization. Successful attachment of an azido‐functionalized coumarin dye is demonstrated. Moreover, the PPMA film displays direct positive‐tone sensitivity to e‐beam irradiation, which enables e‐beam patterning without the use of a resist layer. Direct e‐beam exposure of the multifunctional PPMA iCVD layer results in a 200 nm pattern to which quantum dot nanoparticles are selectively conjugated on the substrates by click chemistry.

  相似文献   


18.
The syntheses of phosphatidylserine (PS) conjugates are described, including fluorescent derivatives for potential cellular delivery and bioimaging applications. Installation of terminal functional groups (amine, thiol, or alkyne) onto the sn-2 chain provides reactive sites for bio-orthogonal conjugation of cargo with suitably protected PS derivatives. An amine-containing PS forms amide bonds with peptidic cargo, a thiol derivative is designed for conjugation to cargo that contain alpha-halo carbonyls or Michael acceptors, and the terminal alkyne PS analogue permits "click" conjugation with any azide-tagged molecule. This latter conjugation method is quite versatile as it can be performed without PS headgroup protection, in aqueous media, and with acid-labile cargo.  相似文献   

19.
Novel methods for affixing functional proteins on surfaces with high areal density have the potential to promote basic biological research as well as various bioarray applications. The use of polymeric templates under carefully balanced thermodynamic conditions enables spontaneous, self-assembled protein immobilization on surfaces with spatial control on the nanometer scale. To assess the full potential of such nanometer-scale protein platforms in biosensing applications, we report for the first time the biological activity of proteins on diblock copolymer platforms. We utilized horseradish peroxidase, mushroom tyrosinase, enhanced green fluorescent protein, bovine immunoglobulin G, fluorescein isothiocyanate conjugated anti-bovine IgG, and protein G as model systems in our protein activity studies. When specific catalytic functions of HRP and MT, immobilized on selective domains of microphase-separated PS-b-PMMA, are evaluated over a long period of time, these enzymes retain their catalytic activity and stability for well over 3 months. By performing confocal fluorescence measurements of self-fluorescing proteins and interacting protein/protein systems, we have also demonstrated that the binding behavior of these proteins is unaffected by surface immobilization onto PS-b-PMMA diblock copolymer microdomains. Our polymer platforms provide highly periodic, high-density, functional, stable surface-bound proteins with spatial control on the nanometer scale. Therefore, our diblock copolymer-guided protein assembly method can be extremely beneficial for high-throughput proteomic applications.  相似文献   

20.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号