首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
蜂窝夹芯圆环的拓扑优化设计及尺度效应研究   总被引:2,自引:1,他引:1  
采用尺度关联的一体化设计方法开展了旋转周期圆环结构的拓扑优化设计研究,以宏观 结构的最大刚度为目标,研究了材料表征体胞尺度、构型以及不同载荷作用形式对蜂窝夹芯 圆环结构优化结果的影响. 所提出的无量纲结构构型因子实现了优化结构的结构效率量化评 估. 结合SIMP材料模型和周长控制方法,实现了宏观结构和细观表征体胞的优化设计,获得 清晰的材料分布. 数值算例表明,尺度关联的一体化设计方法能有效地完成圆环结构的拓扑 优化设计,设计结果充分反映体胞尺度效应对旋转周期圆环结构夹芯构型的影响.  相似文献   

2.
提出一种具有宏观负泊松比效应的新型蜂窝舷侧防护结构,通过对负泊松比效应蜂窝胞元特殊结构构型设计,实现中等弹速下良好抗爆抗冲击性能。利用有限元动力学分析软件,研究鱼雷或导弹水下对舷侧防护结构的撞击侵入和穿透过程,对比研究了不同蜂窝构型、材料、胞元尺寸和胞壁厚度对舷侧结构抗冲击性能的影响。结果表明,蜂窝防护结构具有良好的抗冲击性能,负泊松比蜂窝构型较正泊松比蜂窝构型抗冲击性能更优。  相似文献   

3.
对于具有特定材料属性的周期性复合材料设计,提出了一种参数化的形状优化方法。对于带有周期性结构的两相材料,给定细观单胞结构的基本构型,通过参数化的实体造型技术,结合均匀化方法,实现了通用的材料单胞形状参数化设计方法,以获取指定材料性能。在参数化结构形状优化设计CAD/CAE集成平台POSHAPE上完成程序实现。文中算例给出了两相蜂窝型骨架复合材料和空心复合材料周期性单胞的零泊松比和指定参数性质的形状优化设计过程,并验证了本文方法的有效性。  相似文献   

4.
针对传统正方形蜂窝,通过用更小的双向内凹结构胞元替代原蜂窝材料的结构节点,得到了一种具有负泊松比特性的节点层级蜂窝材料模型。利用显式动力有限元方法,研究了冲击荷载作用下该负泊松比蜂窝结构的动力学响应及能量吸收特性。研究结果表明,除了冲击速度和相对密度,负泊松比蜂窝材料的动力学性能亦取决于胞元微结构。与正方形蜂窝相比,该负泊松比层级蜂窝材料的动态承载能力和能量吸收能力明显增强。在中低速冲击下,试件表现为拉胀材料明显的"颈缩"现象,并展示出负泊松比材料独特的平台应力增强效应。基于能量吸收效率方法和一维冲击波理论,给出了负泊松比蜂窝材料的密实应变和动态平台应力的经验公式,以预测该蜂窝材料的动态承载能力。本文的研究将为负泊松比多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。  相似文献   

5.
给出了预测六边形蜂窝材料等效剪切模量及其尺寸效应的圆筒扭转力学模型和扭转能量法,建立了等效面外剪切模量G13相对于材料体分比ν、周向单胞数n、圆筒半径r和单胞层数参数m变化的解析表达式;同时将扭转能量法、有限元数值模拟计算和G-A经典细观力学方法进行了比较,从理论上揭示并验证了尺寸效应的存在性. 结果表明,当蜂窝体胞尺寸相对结构尺寸无穷小时,预测结果趋近于细观力学方法的结果. 此外,利用周期性蜂窝材料的结构对称特性,使用体胞子结构有限元计算模型进行等效面外剪切模量及其尺寸效应的预测,在不影响计算结果的前提下极大地提高了计算效率.  相似文献   

6.
梯度蜂窝面外动态压缩力学行为与吸能特性研究   总被引:1,自引:0,他引:1  
蜂窝材料具有优异的抗冲击吸能特性。为进一步提高蜂窝材料的比吸能与压缩力效率,提出了一种几何参数或材料参数沿厚度方向梯度渐变的蜂窝材料模型,并针对六边形蜂窝构型研究了胞元壁厚和屈服强度梯度变化的蜂窝材料在面外动态压缩载荷下的力学行为与吸能特性。研究结果表明,通过调控梯度变化的指数,胞元壁厚或母体材料屈服强度的梯度设计均可有效降低初始峰值应力,并使蜂窝材料的比吸能和压缩力效率同时增大。研究结果可为蜂窝材料的防撞性优化设计提供新的思路。  相似文献   

7.
分别针对剪切和扭转两种工况给出了微纳米薄壁蜂窝等效剪切模量的解析计算方法.该方法综合考虑了由面板对芯层的约束导致的高度效应和当蜂窝胞壁厚度进入微纳米量级时引起的尺度效应.首先对蜂窝各胞壁选取了可反映面板约束以及受力状态的三角级数位移场,然后在本构关系中引入修正偶应力理论以描述尺度效应,最后应用能量均匀化方法求得蜂窝的等效剪切模量.以典型六边形蜂窝为例,给出了完整的计算过程和结果.与文献中的等效剪切模量结果进行对比,讨论了不同工况下等效剪切模量随芯层高度和胞壁厚度的变化趋势,以及高度效应和尺度效应之间的相互影响.  相似文献   

8.
将周期性蜂窝材料等效为具有非局部本构的微极连续介质,以解释实验中出现的尺度效应和边界层效应.在评论相关的多种不同方法(能量法、体积平均的均匀化法等)之后,提出了一种基于位移连续和单胞力平衡的推导微极等效本构参数的新方法.以正方形单胞制成的结构为例,在不同的结构与单胞尺寸比下,考虑承受集中点载荷、均布轴力和均布剪力三种载荷工况,比较了离散完全计算、经典连续介质等效和不同微极连续体等效本构的计算结果,建议了较好的微极本构参数值.数值模拟表明,集中点载荷和剪切载荷作用时,在加载点附近和边界部分,微极等效可以显著提高计算精度.最后,给出了一种映射算法,可以根据微极等效连续体分析的结果,快速计算出对应微观单胞构件的应力,以开有圆孔的方板应力集中为例,验证并考察了所提快速算法的有效性和计算精度.  相似文献   

9.
多孔材料因具有轻量化、高孔隙率和减振/散热等优良多物理特性,在航空航天等领域具有广阔应用前景。采用拓扑优化方法对含多种多孔材料的结构进行结构与材料微结构构型一体化设计,有助于获得具有优良力学性能的结构设计。然而,传统逆均匀化微结构设计方法无法确保不同多孔材料微结构之间的连接性,设计结果不具备可制造性。本文面向含多种多孔材料的双尺度结构基频最大化设计问题,考虑不同微结构之间的连接性,协同设计多孔材料的微结构构型及其在宏观尺度下的布局。采用均匀化方法计算多孔材料的宏观等效力学性能,通过对不同多孔材料微结构单胞的边界区域采用相同的拓扑描述确保双尺度优化过程中任意空间排布下不同微结构的连接性,并通过优化算法确定微结构间的连接形式及微结构拓扑。在宏观尺度,提出结合离散材料插值模型和RAMP插值模型RAMP (Rational Approximation of Material Properties)的多孔材料各向异性宏观等效刚度及质量插值模型,获得清晰的多孔材料宏观尺度布局并减轻优化过程中伪振动模态的影响。建立以双尺度结构基频最大化为目标,以材料用量为约束的优化列式,推导灵敏度表达式,并基于梯度优化算法求解双尺度结构拓扑优化问题。数值算例表明,采用本文优化方法能够有效确保基频最大化双尺度结构设计中不同多孔材料微结构之间的连接性,增强优化设计结果的可制造性。  相似文献   

10.
分层递变梯度蜂窝材料的面内冲击性能   总被引:3,自引:0,他引:3  
提出了一种分层递变梯度蜂窝材料模型,以期控制蜂窝材料的能量动态吸收性能.此模型通过改变胞元的半径来改变蜂窝材料的面内特征参数,以实现蜂窝材料面内动力响应特性的多目标优化设计.计算结果表明,此模型可以在减小初始峰值应力水平的前提下,同时实现材料能量吸收过程的控制,并可以有效控制进入被保护结构的应力水平.此模型可为蜂窝材料...  相似文献   

11.
Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research.  相似文献   

12.
A multi-scale model for the structural analysis of the in-plane response of masonry panels, characterized by periodic arrangement of bricks and mortar, is presented. The model is based on the use of two scales: at the macroscopic level the Cosserat micropolar continuum is adopted, while at the microscopic scale the classical Cauchy medium is employed. A nonlinear constitutive law is introduced at the microscopic level, which includes damage, friction, crushing and unilateral contact effects for the mortar joints. The nonlinear homogenization is performed employing the Transformation Field Analysis (TFA) technique, properly extended to the macroscopic Cosserat continuum. A numerical procedure is developed and implemented in a Finite Element (FE) code in order to analyze some interesting structural problems. In particular, four numerical applications are presented: the first one analyzes the response of the masonry Representative Volume Element (RVE) subjected to a cyclic loading history; in the other three applications, a comparison between the numerically evaluated response and the micromechanical or experimental one is performed for some masonry panels.  相似文献   

13.
This paper focuses on the development of an algorithm capable of generating morphologically-representative foam structures using the Representative Volume Element (RVE) approach. Stereology, a sampling method based on direct observations of the foam cross-sections, is used to characterize the pore size and shape distributions. Using the morphology generation algorithm, the smallest RVEs corresponding to the numerically-convergent foam morphologies are calculated for different foam porosities. To validate the foam generation algorithm, the pore size and shape distributions of the numerically-generated foams are compared to those of the titanium foams manufactured by the space holder method.  相似文献   

14.
Semicrystalline polymers (SCPs) used in complex petroleum structures are subjected to high variations of temperature and gas pressure, which induce some damage. For this reason, the Representative Volume Element (RVE) of a SCP evolving in a gaseous environment is modelled using a phenomenological approach based on the porous media theory. SCPs are in fact two-phase materials at the scale of the spherolite. One phase is crystalline (skeleton), and the other corresponds to a mixture (fluid) of gas and free amorphous medium (the latter is considered penetrable by gas). The modelling is described within the framework of the thermodynamics of irreversible processes with internal variables by considering the above RVE. An elastoviscoplastic model with cavity growth is proposed within the framework of general diffuso-mechanical continuum media. The aim is to predict the evolution of ductile damage observed during decompression. This two-phase diffuso-elastoviscoplastic-damage model is implemented in Abaqus® software via a user subroutine. This numerical tool allows us to study the damage of polyvinylidene fluoride SCP during a rapid decompression test.The influence of the decompression rate on the evolution of initial cavities is discussed. Comparison with experiments shows the relevance of the proposed model as far as blistering is concerned. We hope that the present model can help understanding the occurrence of damage mechanisms during decompression.  相似文献   

15.
A mean field mechanical model describing the inelastic behavior and strong anisotropy of Directionally Solidified (DS) materials is developed. Its material parameters are calibrated by comparison with the Finite Element (FE) computation of a Representative Volume Element (RVE). In the case of a large grain alloy where microstructure size cannot be neglected with respect to geometrical variations, this approach is a good candidate to evaluate the local scatter coming from the material heterogeneity.  相似文献   

16.
On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to anisothermal cases and then to thermo-mechanical fatigue. The modeling consists in the micromechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at microscale, altogether with Eshelby–Kröner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or anisothermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE_2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed.  相似文献   

17.
Many composite materials, widely used in different engineering fields, are characterized by random distributions of the constituents. Examples range from polycrystals to concrete and masonry-like materials. In this work we propose a statistically-based scale-dependent multiscale procedure aimed at the simulation of the mechanical behavior of a two-phase particle random medium and at the estimation of the elastic moduli of the energy-equivalent homogeneous micropolar continuum. The key idea of the procedure is to approach the so-called Representative Volume Element (RVE) using finite-size scaling of Statistical Volume Elements (SVEs). To this end properly defined Dirichlet, Neumann, and periodic-type non-classical boundary value problems are numerically solved on the SVEs defining hierarchies of constitutive bounds. The results of the performed numerical simulations point out the importance of accounting for spatial randomness as well as the additional degrees of freedom of the continuum with rigid local structure.  相似文献   

18.
In materials evaluation, determining an appropriate Representative Volume Element (RVE) of the material is of paramount importance. This paper is an attempt to provide a quantitative determination of the RVE of concrete mixtures, using fractal analysis. The key point of this study is to consider concrete mixture as a fractal and periodic structure and the basic periodic unit cell in this material as the RVE. Based on a new analytical approach, obtained results suggest that the ratio between the RVE size and the maximum particle size of concrete is likely to be 2.4–3.7, for increasing DF values from 2.5 to 3; DF being the fractal dimension of the concrete size distribution. Additional results were proposed for laboratory concrete testing, which suggest that for ordinary concretes, standard sample sizes, whatever the shape, should be at least around 3.5 times the nominal maximum size of aggregates. Although the proposed approach is based on simple mathematical formulas, obtained results appear broadly consistent with those of other studies based on extensive laboratory testing and modeling. The scope of application of the proposed approach can be extended to numerous solid materials that consist of grains.  相似文献   

19.
The purpose of this paper is to develop a homogeneous, orthotropic couple-stress continuum model to take the place of the periodic heterogeneous cellular solids. Through generalizing the definition of the characteristic length for isotropic couple-stress continuum, four characteristic lengths are introduced as material engineering constants for such kind of continuum. In order to determine the effective moduli and the characteristic lengths of the effective couple-stress continuum, a Representative Volume Element (RVE) method is constructed. The effective properties are obtained based on the response of the RVE under prescribed boundary conditions, and our results agree with the analytical solutions in literature. In addition, the influences of the relative density, the topology, the size, and the properties of the solid material of cellular materials on the effective moduli as well as the characteristic lengths are discussed, respectively. Furthermore, the size effects in cellular solid beams are investigated using our effective couple-stress continuum model. The results show that the developed continuum model in this paper can precisely capture the size effects in cellular solids.  相似文献   

20.

裂隙岩体渗透系数以及渗透主方向的确定对研究岩体渗透性大小及各向异性具有重要意义。高放废物地质处置库介质岩体的渗透性能将直接影响其使用安全性。本文运用离散裂隙网络模拟的方法对我国高放废物处置库甘肃北山预选区3#钻孔附近裂隙岩体进行了渗透性质分析。通过对3#钻孔1715~1780m段压水试验数据的反演,标定了离散裂隙网络渗流模型中的裂隙渗透参数(导水系数T)。利用标定的离散裂隙网络模型对场区裂隙岩体进行了渗流模拟,确定了该区域裂隙岩体的渗流表征单元体(REV)的尺寸大小以及渗透主值和主渗透方向。运用离散裂隙网络模型计算得出的渗透主值的几何均值与现场压水试验计算结果较接近,证明了计算结果的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号