首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both end-functionalized (alpha-bromo and omega-carboxy) compounds were first tested for the radical reaction on the silicon-hydride (Si-H) terminated porous silicon (PSi) with/without the presence of diacyl peroxide initiator under microwave irradiation. Then the carboxylic acid monolayers (CAMs) assembled on PSi through the robust Si-C bonds were converted to amino-reactive linker, N-hydroxysuccinimide (NHS)-ester, terminated monolayers. And finally two proteins of bovine serum albumin (BSA) and lysozyme (Lys) were immobilized through amide bonds. The optimum PSi membrane for protein immobilization without collapse, with parameters of porous radii 4-10 nm and depth 0.2-4.6 mum, was prepared from the (100)-oriented p-type silicon wafer. The chemically converted surface products were monitored with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM).  相似文献   

2.
Flat H-terminated Si(111) substrates modified with alkyl monolayers terminated with hydrophobic and hydrophilic functional groups were prepared using known surface functionalization methods and characterized by FTIR, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The surfaces were then used for the study of non-specific binding of proteins from complex mixtures (using standard mixture of proteins with average molecular weight approximately 6-66 kDa) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protein adsorption on these surfaces (following on-probe fractionation of the mixture) was found to be dependent on the nature of surface functional groups, and nature and pH of rinsing solutions used. The results obtained in this work demonstrate that simple silicon-based surface modifications can be effective for direct analysis of complex mixtures by MALDI-MS. Preliminary results obtained using similarly functionalized porous silicon substrates proved that such substrates are (due to their increased surface areas) better performing than flat silicon.  相似文献   

3.
The high stability of Salonen's thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge--many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces.  相似文献   

4.
Alkyl monolayer modified porous silicon functional surfaces are employed for selective binding of proteins from complex mixtures (through washing of the deposited mixture spot using appropriate buffer) and MALDI-MS is used to detect the components retained on the surface.  相似文献   

5.
The stability and rupture of thin wetting films from aqueous NaCl or Na2SO4 solutions of different concentrations on silicon carbide were investigated. The flat surface of SiC was obtained by plasma-enhanced chemical vapor deposition (PE-CVD) on top of a silicon wafer. The microinterferometric method was used for measuring the film thickness with time. The light reflectance was calculated as a function of film thickness for the four-layer system: air/aqueous solution/SiC/Si wafer. The microinterferometric experiments showed that films from aqueous NaCl and Na2SO4 solutions with concentrations up to 0.01 M were stable independent of the pre-treatment of the substrate. The pre-treatment of the SiC surface was crucial for the wetting film stability at electrolyte concentrations greater than 0.01 M. The films were unstable and ruptured if SiC was washed with 5% hydrofluoric acid and concentrated sulfuric acid, while they were stable if washing was in sulfuric acid only, without immersing SiC in HF. The average equilibrium film thickness was determined as a function of electrolyte concentration. Measurements of the electrokinetic potential zeta were performed by electrophores of SiC powder in 0.001 M NaCl. It was shown that silicon carbide surface was negatively charged. The theory of heterocoagulation was used for the interpretation of the results. Besides the DLVO forces, the structural disjoining pressure (both positive and negative) has been included in the analysis.  相似文献   

6.
Several methods are presented for the routine ultra-trace analytical monitoring of inorganic and organic anions and cations on the surface and in the native oxide of silicon wafers--the wafer-surface water-extraction method, the vapor-phase-decomposition method, and the re-dissolving method. Electrokinetic injection, sample stacking, and electrolyte composition were, therefore, optimized and made robust. For electrokinetic injection with transient isotachophoretic preconcentration a linear range of 0.05 to 0.5 micromol L(-1) was obtained; for sample stacking the linear range was 0.5 to 10 micromol L(-1), even in the presence of up to 750 micromol L(-1) hydrofluoric acid. Inorganic anions and monovalent carboxylic acids are predominately dissolved in the aqueous layer on the wafer surface whereas dicarboxylic acids are chemically bonded to the silanol groups and form esters.  相似文献   

7.
多孔硅表面性质导致电致发光的进一步论证   总被引:5,自引:2,他引:3  
用荧光分光光度法现场监测多孔硅在阳极偏压下于溶液中的电致发光行为 ,该电致发光行为主要取决于多孔硅本身的表面性质 .将电致发光实验后的多孔硅样品再次电解 ,并再次进行电致发光实验 ,发现其发光性能明显改善 ;实验表明 ,多孔硅在阳极偏压下的液相电致发光机制是由表面的Si_H键氧化向导带注入电子 ,并与阳极偏压注入的价带空穴进行复合而发光 ;此外 ,还发现了多孔硅于溶液中在阳极偏压下电压调制的可见光发射行为 ,并以量子限制效应对该现象进行了解释  相似文献   

8.
One-dimensional photonic crystals (rugate filters) constructed from porous silicon were modified by the chemical hydrosilylation of terminal alkenes (decyl, 10-carboxydecyl, and 10-hydroxydecyl) in the presence of a concentration gradient of diazonium salt initiators. The concentration gradient was generated by vertically orienting the Si wafer containing the porous Si layer in an alkene solution and then introducing the diazonium salt at the bottom edge of the wafer. Slow diffusion of the salt led to a varying density of grafted alkene across the surface of the porous layer. The modified surfaces were end-capped with methyl groups by electrochemical grafting to impart improved stability and greater hydrophobicity. The surface modified with 10-carboxydecyl species was ionized by deprotonation of the carboxy groups to increase the hydrophilicity of this porous silicon surface. The pore-wall modification gradients were characterized using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The more hydrophilic portion of the gradient changes color when water infiltrates the porous nanostructure because of a shift in the stop band of the photonic crystal. The more hydrophobic portion of the gradient excludes water, although mixtures of water and ethanol will infiltrate this region, depending on the concentration of ethanol in the mixture. A simple visual sensor for small quantities of ethanol in water, capable of detecting ethanol concentrations of between 0 and 8% with a resolution of 1% is demonstrated.  相似文献   

9.
周小会  颜红  肖守军 《无机化学学报》2011,27(11):2291-2297
通过简便的化学沉积法在多孔硅上制备银纳米粒薄膜用于表面增强红外光谱检测。通过Ag+与多孔硅表面的SiHx发生氧化还原反应将银纳米粒子沉积在多孔硅表面。红外探针分子溶解于无水乙醇中进而被均匀分散在多孔硅表面,实验结果显示:对氨基苯硫酚、对氨基苯甲酸和对氟苯硫酚3个探针分子的红外峰分别最大增强了10、85和21倍。银纳米粒的大小和形状等物理特性、探针分子是否有与银表面进行强结合的基团和芳烃结构、以及表面选律等因素影响表面增强红外的吸收效应。  相似文献   

10.
Preparation and self-assembly of carboxylic acid-functionalized silica   总被引:1,自引:0,他引:1  
A simple method for the fabrication of silica nanoparticle film based on the covalent-bonding interaction between carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) and amino-terminated silicon wafer was developed. Prior to assembly, silica nanoparticles with an average diameter 80 nm were prepared using the St?ber method, amino-functionalized silica nanoparticles (SiO(2)-NH(2)) were prepared by a silanization with 3-aminopropyltriethoxysilane (APTES), while carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) were prepared by a ring opening linker elongation reaction of the amine functions with succinic anhydride, at the same time, amino-terminated silicon wafer (Si-NH(2)) was obtained by self-assembling 3-aminopropyltriethoxysilane, then one layer relative close-packed carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) was arranged on silicon wafer through amidation reaction under DCC coupling agent.  相似文献   

11.
Measurements of ion distributions at a charged solid–liquid interface using X‐ray standing waves (XSW) are presented. High energy synchrotron radiation (17.48 keV) is used to produce an XSW pattern inside a thin water film on a silicon wafer. The liquid phase is an aqueous solution containing Br and Rb ions. The surface charge is adjusted by titration. Measurements are performed over a pH range from 2.2–9, using the native Si oxide layer and functional (amine) groups as surface charge. The Debye length, indicating the extension of the diffuse layer, could be measured with values varying between 1–4 nm. For functionalized wafers, the pH dependent change from attraction to repulsion of an ion species could be detected, indicating the isoelectric point. In combination with the measurement of the streaming current, the surface charge of the sample could be quantified.  相似文献   

12.
The patterning and immobilization of protein molecules onto functionalized silicon substrate through surface silane chemistry is of interest because protein patterning is an important prerequisite for the development of protein-based diagnostics in biological and medicinal fields. As a model system, mesoscale netty lysozyme arrays were assembled on oxidized undecyltrichlorosilane (UTSox) monolayer coated silicon surface through nanosphere lithography. The size of the arrays ranged from nanometer to micrometer can be easily adjusted by changing the size of nanospheres applied on the surface. By using nanosphere lithography, we are capable of fabricating a regular array of protein islands over centimeter sample regions. The created lysozyme protein patterns were characterized by atomic force microscopy (AFM) and fluorescence microscope, respectively. The analysis has demonstrated that this newly established approach offers a faster and more reliable process to fabricate netty protein arrays over large areas compared to conventional scanning-probe based fabrication methods. Furthermore, the carboxylic acid-terminated layer on surfaces is particularly effective for immobilizing protein molecules through either electrostatic interactions or covalent attachment via imine bonds. Therefore, the negative-toned protein structure on the surface with carboxylic acid groups coated on the bare areas makes it possible to fabricate two types of protein molecules on one surface.  相似文献   

13.
Multilayer films were assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA), deposited in alternation with poly(allylamine hydrochloride) (PAH). The strongly charged groups (styrene sulfonate, SS) are expected to form electrostatic linkages (to enhance film stability), while the weakly charged groups (maleic acid, MA) can alter multilayer film properties because they are responsive to external pH changes. In this study, we varied several assembly conditions such as pH, SS/MA ratio in PSSMA, and the ionic strength of the polyelectrolyte solutions. The multilayer films were also treated by immersion into pH 2 and 11 solutions after assembly. Quartz crystal microgravimetry and UV-visible spectrophotometry showed that the thickness of PSSMA/PAH multilayers decreases with increasing assembly pH regardless of whether salt was present in the polyelectrolyte solutions. When no salt was added, the multilayers are thinner, smoother, and grow less regularly. Atomic force microscopy images indicate that the presence of salt in polyelectrolyte solutions results in rougher surface morphologies, and this effect is especially significant in multilayers assembled at pH 2 and pH 11. When both polyelectrolytes are adsorbed at conditions where they are highly charged, salt was necessary to promote regular multilayer growth. Fourier transform infrared spectroscopy studies show that the carboxylic acids in the multilayers are essentially ionized when assembled from different pHs in 0.5 M sodium chloride solutions, whereas some carboxylic acids remain protonated in the multilayers assembled from solutions with no added salt. This resulted in different pH stability regimes when the multilayers were exposed to different pH solutions, post assembly.  相似文献   

14.
硅片类型和多孔硅结构的多样性影响了多孔硅表面的激光解吸/离子化质谱(DIOS)(无辅助基质的激光解吸/电离飞行时间质谱(LDI-TOF-MS))数据的重复性和靶的耐储时间。本工作通过在多孔硅的表面淀积金纳米颗粒并将其作为目标靶来增强软物质分子如聚乙二醇和多肽的激光解吸/电离质谱信号。纳米金的淀积钝化了多孔硅表面的Si-H活性基团,增加了靶的耐储时间。用场发射扫描电镜表征了多孔硅淀积金纳米颗粒前后的形貌,用X射线能量色散光谱法分析金的百分含量,结果表明其含量随沉积时间的延长而增加。激光解吸/电离质谱信号的增强可能是由多孔硅及其支持的金纳米颗粒的光学和物理性质引起的,该类型的样品靶在激光解吸/电离飞行时间质谱的应用上结合了多孔硅和金纳米颗粒的双重优势。  相似文献   

15.
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is a novel soft ionization MS technique that does not require any matrix reagent, ideally resulting in fewer obstructive peaks in the lower mass region. In this study, the etching conditions of porous silicon spots as an ionization platform of DIOS-MS were investigated for determining the molecular weight distribution (MWD) of polymers. To evaluate the accuracy of DIOS mass spectra observed using porous silicon spots prepared under various etching conditions, a certified polystyrene (PS) standard sample with an average molecular weight of ca. 2400 was used as a model sample. By optimizing the etching conditions, the MWD of the PS sample could be accurately observed by DIOS-MS using both p-type and n-type porous silicon spots. Especially, in the case of a suitable n-type spot, an accurate peak distribution with very fewer obstructive background peaks could be observed using the minimum laser power, comparable to the conventional matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS).  相似文献   

16.
A new approach for the preparation of a biochip on porous silicon and the application of the biochip for detection of small molecule-protein interactions with desorption/ionization on porous silicon (DIOS) was demonstrated. The galvanostatically etched porous silicon substrates were chemically modified firstly to yield carboxylic acid terminated surfaces, and then the protein was covalently attached to the surface through amide bonding. By applying a solution of candidate chemicals to the surface and a subsequent wash step, the masses of captured compounds could be analyzed by DIOS. DIOS has advantages of being a direct detection tool compared to the classic fluorescence or chemiluminescence methods, because the process of labeling molecules employed in the fluorescence or chemiluminescence methods can sometimes alert the properties of the labeled molecule. The recognition between proteins and their binding partners is efficient and selective. A good tolerance to disturbance and high enrichment factor of the biochip to the analytes was observed. As an on-chip-based approach, the demonstrated method has a potential to perform in a high-throughput format.  相似文献   

17.
Covalently attached organic monolayers on etched silicon nitride (SixN4; x >/= 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle, XPS, IRRAS, AFM, and ToF-SIMS, and evidence for the formation of Si-C bonds is presented. The etching can be achieved by dilute HF solutions and yields both Si-H and N-H moieties. The resulting etched SixN4 surfaces are functionalized by terminal carboxylic acid groups in either of two ways: (a) via attachment of a 10-undecenoic acid 2,2,2-trifluoroethyl ester (trifluoro ethanol ester) and subsequent thermal acid hydrolysis; (b) through attachment of a photocleavable ester, and subsequent photochemical cleavage, as this would allow photopatterned functionalized SixN4. The carboxylic acids are successfully used for the attachment of oligopeptides (aspartame) and complete proteins using EDC/NHS chemistry. Finally, an amino-terminated organic monolayer can be formed by reaction of HF-treated SixN4 surfaces with a N-(omega-undecylenyl)phthalimide, which yields an amino-terminated surface upon deprotection with hydrazine.  相似文献   

18.
We report here the photochemical surface modification of poly(methyl methacrylate), PMMA, microfluidic devices by UV light to yield pendant carboxylic acid surface moieties. Patterns of carboxylic acid sites can be formed from the micrometer to millimeter scale by exposure of PMMA through a contact mask, and the chemical patterns allow for further functionalization of PMMA microdevice surfaces to yield arrays or other structured architectures. Demonstrated here is the relationship between UV exposure time and PMMA surface wettability, topography, surface functional group density, and electroosmotic flow (EOF) of aqueous buffer solutions in microchannels made of PMMA. It is found that the water contact angle on PMMA surfaces decreases from 70 degrees to 24 degrees after exposure to UV light as the result of the formation of carboxylic acid sites. However, upon rinsing with 2-propanol, the water contact angle increases to approximately 80 degrees , and this increase is attributed to changes in surface roughness resulting from removal of low molecular weight PMMA formed from scission events. In addition, the surface roughness and surface coverage of carboxylic acid groups exhibit a characteristic trend with UV exposure time. Electroosmotic flow (EOF) in PMMA microchannels increases upon UV modification and is pH dependent. The possible photolysis mechanism for formation of carboxylic acid groups on PMMA surfaces under the conditions outlined in this work is discussed.  相似文献   

19.
IntroductionThe study of luminescent silicon material[1] ,especially porous silicon( PS) ,has received muchattention owing to its potential application ininformation technology. Many models have beenproposed to explain their photoluminescnece andelectroluminescence[1— 11] . Three of the mostpopular models are the quantum confinement[1,2 ] ,surface trapping[3 ,4] ,and oxygen related chemicalspecies formation[5,6] .It has been suggested thatsurface chemical reaction plays an importantrole info…  相似文献   

20.
The spontaneous one-electron reduction of diazonium salts on hydride-terminated porous silicon (pSi) and flat silicon produces surface radicals that can be trapped chemically. These silicon radicals react with reagents such as alkyl/arylselenoethers, alkenes, alkynes, and alkylbromide groups to generate covalently bound functionalities in a manner analogous to the chemistry of molecular-based silicon radical species, prepared via different methods. When pSi is exposed to an acetonitrile solution of any of the three diazonium salts examined in this study, aryl groups from the diazonium precursor become covalently bound and significant oxidation is noted; if, however, a reactive trapping agent is added, such as an alkyl/arylselenoether or a carbon-carbon unsaturated bond, no aryl group attachment is observed and oxidation is circumvented due to the efficiency of the trapping chemistry. The reactions proceed rapidly, in less than 3 h to maximum coverage, at room temperature. The diazonium salt-initiated radical reaction with alpha,omega-alkenes and alkynes tolerates various functional groups including aryl, diene, diyne, carboxylic acid, and hydroxyl, reacting exclusively via the carbon-carbon unsaturated bond; alpha,omega-bromoalkenes are not, however, compatible with this chemistry. A silicon-based molecule, tris(trimethylsilyl)silane, in the presence of a diazonium salt initiator and a primary alkyne does not lead to the hydrosilylation product but to tris(trimethylsilyl)silylbromide and the hydrogenated arene, derived from the diazonium. The difference in reactivity between the molecule and the surface is due to the fact that the silicon surface is a source of electrons to reduce the diazonium salts to aryl radicals, whereas a heterolytic pathway is followed in the molecular silane case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号