首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
Activated carbon sorbents impregnated with KOH, Fe(NO3)3, Cu(NO3)2, Zn(NO3)2 or Co(NO3)2 and their applications in catalytic oxidation reaction of COS were investigated. The results showed that the activated carbon modified with 10 % (mass percentage) KOH enhanced the adsorption ability significantly. And it was also found that the oxygen content and temperature were the two most important factors in the COS adsorption. Further investigation on the pore structures of the samples with X-ray photoelectron spectroscopy indicated that an adsorption/oxidation process happened in the KOH modified activated carbon in which the major existing forms of sulfur were SO4 2? and S species. The oxidation of COS suggested that KOH in the micropores may play a catalytic role during the adsorption. On the other hand, we found that the desorption activation energy from KOHW was higher than that from AC by the CO2-TPD spectra, which indicated the adsorption of CO2 on KOH impregnated activated carbon was stronger. The strong adsorption could be attributed to the basic groups on the activated carbon surface. In conclusion, the activated carbon impregnated with KOH promises a good candidate for COS adsorbent.  相似文献   

2.
NaA, NaX and NaZSM-5 zeolites were prepared by using silica extracted from rice hull ash as a raw material, and they were investigated for CO2 adsorption performance as an adsorbent in order to solve the problem of suppressing the global warming. Three zeolites were synthesized by hydrothermal methods with seed technology, and a series of characterization methods, including XRD, FTIR, nitrogen adsorption-desorption and SEM, were used to demonstrate their advantages compared to traditional hydrothermal methods. The maximum equilibrium adsorption capacity of NaA-RS, NaX-RS and NaZSM-5-RS was 1.46, 3.12 and 2.20 mmol/g at 0 °C and 101.3 kPa, respectively. The CO2 and N2 adsorption isotherms recorded at different temperatures were perfectly fitted by the Dual-site Langmuir model. The CO2/N2 selectivity and Henry's law constants were calculated to demonstrate that the samples have a stronger affinity for CO2, especially at low pressures. The isosteric heat of CO2 and N2 adsorption of the three zeolites was calculated, which was indicated that they were in an excellent potential for adsorption and separation of CO2 in industrial flue gas.  相似文献   

3.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

4.
A carbon dioxide imprinted solid amine adsorbent (IPEIA‐R) with polyethylenimine (PEI) as a skeleton was conveniently prepared by using glutaraldehyde to cross‐link carbon dioxide‐preadsorbed PEI. As confirmed by FTIR, FT‐Raman, and 13C NMR spectroscopy, CO2 preadsorbed on PEI could occupy the reactive sites of amino groups and act as a template for imprinting in the cross‐linking process. The imino groups formed from the cross‐linking reaction between glutaraldehyde and PEI could be reduced by NaBH4 to form CO2‐adsorbable amino groups. The adsorption results indicated that CO2 imprinting and reduction of imino groups by NaBH4 endowed the adsorbent with a higher CO2 adsorption capacity. Compared with PEI‐supported mesoporous adsorbents, the solid amine adsorbent with PEI as a skeleton can avoid serious pore blockage and CO2 diffusion resistance, even with a high amine content. The solid amine adsorbent with PEI as a skeleton showed a remarkable CO2 adsorption capacity (8.56 mmol g?1) in the presence of water at 25 °C, owing to the high amine content and good swelling properties. It also showed promising regeneration performance and could maintain almost the same CO2 adsorption capacity after 15 adsorption–desorption cycles.  相似文献   

5.
A magnesium-based metal organic framework (MOF), also known as Mg-MOF-74, was successfully synthesized, characterized, and evaluated for adsorption equilibria and kinetics of CO2 and CH4. The Mg-MOF-74 crystals were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. Adsorption equilibrium and kinetics of CO2 and CH4 on the Mg-MOF-74 adsorbent were measured in a volumetric adsorption unit at 278, 298, and 318 K and pressures up to 1 bar. It was found that the Mg-MOF-74 adsorbent prepared in this work has a median pore width of 10.2 Å, a BET specific surface area of 1174 m2/g, CO2 and CH4 adsorption capacities of 8.61 mmol g?1 (37.8 wt.%) and 1.05 mmol g?1 (1.7 wt.%), respectively, at 298 K and 1 bar. Both CO2 and CH4 adsorption capacities are significantly higher than those of zeolite 13X under similar conditions. The pressure-dependent equilibrium selectivity of CO2 over CH4 (qCO2/qCH4) in the Mg-MOF-74 adsorbent showed a trend similar to that of zeolite 13X and the intrinsic selectivity of Mg-MOF-74 at zero adsorption loading is 283 at 298 K. The initial heats of adsorption of CO2 and CH4 on the Mg-MOF-74 adsorbent were found to be 73.0 and 18.5 kJ mol?1, respectively. The adsorption kinetic measurements suggest that the diffusivities of CO2 and CH4 on Mg-MOF-74 were comparable to those on zeolite 13X. CH4 showed relatively faster adsorption kinetics than CO2 in both adsorbents. The diffusion time constants of CO2 and CH4 in the Mg-MOF-74 adsorbent at 298 K were estimated to be 8.11 × 10?3 and 4.05 × 10?2 s?1, respectively, showing a modest kinetic selectivity of about 5 for the separation CH4 from CO2.  相似文献   

6.
Using density functional theory methods, we have studied carbon trioxide, its adsorption and dissociation on Ag(100). In the gas phase, two isomers are found, D3h and C2v, with the latter of 2.0 kcal mol?1 lower in energy at the PW91PW91/6?31G(d) level. For CO3 on Ag(100), the calculated adsorption energy is 91.2 and 89.1 kcal mol?1 for the bi‐coord perpendicular and tri‐coord parallel structures, respectively. Upon the adsorption, 0.50 ~ 0.56 electron is transferred from silver to CO3, indicative of significant ionic characters of the adsorbate‐surface bonding. In addition, the geometry of CO3 is largely changed by its strong interaction with silver. For CO3(ad) → O(ad) + CO2(gas), the energy barrier is calculated to be 19.8 kcal mol?1 through the bi‐coord path. The process is endothermic with an enthalpy change of +17.3 ~ +26.7 kcal mol?1 and the weakly chemisorbed CO2 is identified as an intermediate on the potential energy surface. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
Recently, MoS2 with abundant electron density in its structure attracted more attention as an adsorbent for environmental remediation. However, hard manipulation of target solution owing to high dispersibility in aqueous media restricts its application as adsorbent. Preparation of Fe3O4/MoS2 nanohybrid can solve this problem. Also, this nanohybrid improves adsorption capacities of target ions. In this work, Fe3O4 nanoparticles, MoS2 nanosheets and hybrid of these two were synthesised and then characterised by X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Fourier transforms infrared spectra, Brunauer–Emmett–Teller surface area and vibrating sample magnetometer. Subsequently, adsorption of Ag(I) and Pb(II) ions from aqueous solution by these three adsorbents was examined in detail and compared with each other while the adsorption conditions including the pH value, contact time, dosage of sorbent, elution conditions and interfering ions have been optimised. According to obtained results, prepared nanohybrid showed enhanced adsorption capacities for both ions relative to naked Fe3O4 and MoS2. The limits of detection for Ag(I) and Pb(II) were calculated as 0.49 µg L?1 and 2.7 µg L?1, respectively, and the relative standard deviation percentages (n = 5) for Ag(I) and Pb(II) were 2.8%, and 3.0%, respectively. Furthermore, the preconcentration factors were 300 and 75 for Ag(I) and Pb(II) ions, respectively. Moreover, kinetic studies showed that pseudo-second-order model can better describe target analytes adsorption properties by every three adsorbents. Regeneration of the adsorbents was performed with HCl/thiourea mixture.  相似文献   

8.
The heat of adsorption of C02on NaZSM-5 at zero occupancy is 50.0 kJ/mole. The differential heats have two linearly descending segments, corresponding to the formation of two types of adsorption complexes with one or two C02 molecules, on the average. The heat of adsorption on silicalite coincides with the heat of adsorption of CO2 on the noncationic segment of the NaZSM-5 zeolite structure (28–29 kJ/mole). The adsorbate-adsorbate interaction forces are not evident on the zeolites up to 1.5 mmole/g occupancy. The isotherms for the adsorption of C02 on zeolite NaZSM-5 and silicalite at 303 K in the occupancy region of 0–1.5 and 0–0.5 mmole/g are completely described by VMOT equations.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2636–2638, November, 1989.  相似文献   

9.
Present study describes the adsorption of carbofuran (CF) from aqueous solutions using p-tetranitrocalix[4]arene based modified silica through batch and column methods. Various parameters were optimized including initial pesticide concentrations (5 mg L?1), pH (2–10), contact time (60 min) and adsorbent dosage (30 mg). Modified silica was characterized by FT-IR and scanning electron microscope. The adsorption was further explained by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. Moreover, adsorption kinetics and adsorption thermodynamics were also investigated. Adsorption in dynamic mode was evaluated by breakthrough volumes and the Thomas model, applying batch conditions using 30 mg of modified silica at pH 5. It has been noticed that CF removal efficiency of modified silica was 98 % as compared to bare silica (48 %). Adsorption of CF on modified silica was found to be multilayer and physical in nature. Consequently, adsorption obeys pseudo-second-order kinetic equation following external mass transfer diffusion process as the rate-limiting step. Thermodynamic parameter (ΔG, ΔS, ΔH) values suggest that the adsorption of CF is spontaneous and exothermic in nature. Thomas model rate constant k TH (cm3 mg?1 min?1) and maximum solid phase concentration (q o mg g?1) was found to be 0.52 and 12.3, respectively, in dynamic mode.  相似文献   

10.
Adsorption-induced deformation of AR-V and AUK carbon adsorbents and NaX zeolite has been studied upon adsorption of n5Н12, n6Н18, n7Н16, and CO2 at temperatures of 193?423 K. It has been shown that adsorption-induced deformation is positive upon the physical adsorption of gases and vapors on the surface of a nonporous (macroporous) solid when the excess adsorption is positive. When calculating the adsorption-induced deformation in the region of the capillary-condensation filling of mesopores, the additional pressure in capillaries, which is negative (contraction of an adsorbent), must be taken into account in the case of wetting a solid surface with a liquid adsorbate. The compressibility of AUK microporous carbon adsorbent as a porous solid is almost independent of the temperature and the properties of an adsorbate, and, for adsorption of n-C5H10 and n-C7H16 hydrocarbons and CO2, it is γа = (5.6 ± 0.6) × 10?6 bar?1. The compressibility of AUK adsorbent appears to be 87% higher than that of nonporous graphite.  相似文献   

11.
Adsorption of La, Eu, and Lu on red clay was studied in an initial concentration range of 10?4–10?3 mol/dm3 and a pH range of 2–10. Among the different forms of red clay: T-clay (thermally modified), R-clay (raw, unmodified), Na-clay (sodium form), H-clay (acid form), and HDTMA-clay (surfactant-modified form), T-clay was found to be the most effective adsorbent of the lanthanides studied. The adsorption/desorption isotherms, i.e. log K d versus log c eq dependencies, had a linear character. Among the investigated lanthanides, Eu was most strongly bound by the clay surface and, therefore, parameters a (slopes of the lines log K d = alog c eq + b) of Eu were the highest compared to those for La and Lu. Desorption isotherms were located above adsorption isotherms, which resulted from chemiadsorption of the investigated lanthanides. Changes in lanthanide adsorption with pH were successfully modelled based on the molar fractions of Ln3+, LnOH2+, LnCO3 +, and Ln(CO3) 2 ? species in the aqueous phase [Ln—lanthanide(III)].  相似文献   

12.
Amino-functionalized silica spheres with centrosymmetric radial mesopores and high amino loading were synthesized using the anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as template and 3-aminopropyltrimethoxysilane (APTMS) as co-structure directing agent (CSDA) by an orthogonal experiment optimization. The synthesized amino-functionalized mesoporous silica (AFMS) was used as adsorbent to the selective adsorption of CO2. The effects of water vapor in the adsorptive stream on the adsorption properties of CO2 were investigated in detail. The results show that the synthesized adsorbent possesses a high adsorption selectivity for CO2 over CH4 and N2 due to the specific interactions between CO2 and amino groups. The presence of water vapor in the adsorptive stream can dramatically enhance the adsorbed amount of CO2 because of the partial formation of bicarbonate in the presence of moisture. Furthermore, the adsorbent shows a good stability, confirmed by adsorption-regeneration cycles. Based on these excellent properties, the application of the developed AFMS adsorbent in the selective adsorption of CO2 is anticipated.  相似文献   

13.
Continuous metal–organic framework‐type Co3(HCOO)6 intergrown films with a one‐dimensional zigzag channel system and pore aperture of 5.5 Å are prepared by secondary growth on preseeded macroporous glass‐frit disks and silicon wafers. The adsorption behavior of CO2 or CH4 single gases on the Co3(HCOO)6 membrane is investigated by in situ IR spectroscopy. It is shown that the isosteric heats of adsorption for CO2 (17.7 kJ mol?1) and CH4 (14.4 kJ mol?1) do not vary with increasing amount of adsorbed gases. The higher value of isosteric heat for CO2 is an indication of the stronger interaction between the CO2 and the Co3(HCOO)6 membrane. The Co3(HCOO)6 membrane is studied by binary gas permeation of CO2 and CH4 at different temperatures (0, 25, and 60 °C). The membrane has CO2/CH4 selectivity with a separation factor higher than 10, which is due to the unique structure and molecular sieving effect. Upon increasing the temperature from 0 to 60 °C, the preferred permeance of CO2 over CH4 is increased from 1.70×10?6 to 2.09×10?6 mol m?2 s?1 Pa?1, while the separation factor for CO2/CH4 shows a corresponding decrease from 15.95 to 10.37. The effective pore size of the Co3(HCOO)6 material combined with the pore shape do not allow the two molecules to pass simultaneously, and once the CO2 molecules are diffused in the micropores, the CH4 is blocked. The supported Co3(HCOO)6 membrane retains high mechanical stability after a number of thermal cycles.  相似文献   

14.
An activated carbon from Coconut (Cocos nucifera) shells was prepared by physical activation with carbon dioxide and water vapor. The activated carbon obtained has a surface area of 1058 m2 g?1 and such a high micropore volume of 0.49 cm3 g?1. This carbon was studied for the removal of lead from water. Sorption studies were performed at 30 °C, at different pH and adsorbent doses, in batch mode. Lead precipitation was observed on the surface of the activated carbon. Maximum adsorption occurred at pH 9 for an adsorbent dose of 2 g L?1. Kinetic studies, at the initial concentration of 150 mg L?1 of lead, pH 5 and an adsorbent dose of 1 g L?1, yielded an equilibrium time of 50 h for this activated carbon. The kinetic data were modeled with the pseudo first order, the pseudo second order and the Bangham models. The pseudo second order model fitted the data well. The sorption rate constant (7 × 10?4 mol?1 Kg s?1) and the maximum amount of lead adsorbed (0.23 mol kg?1) are quite good compared to the data found in literature. Sorption equilibrium studies were conducted in a concentration range of lead from 0 to 150 mg L?1. In an aqueous lead solution with an initial concentration of 30 mg L?1, at pH 5, adsorbent dose 1 g L?1, activated Coconut shell carbon removed at equilibrium 100 % of the heavy metal. The equilibrium data were modeled with the Langmuir and Freundlich equations, of which the former gave the best fit. The Langmuir constants Qmax eq (0.23 mol kg?1) and KL (487667 L mol?1) are in good agreement with literature. XPS studies identified adsorbed species as lead carbonates and/or lead oxalates and precipitates as lead oxide and/or lead hydroxide on the activated carbon surface. The Coconut shell activated carbon is a very efficient carbon due to its high surface area, to the presence of many micropores on its surface and to the presence surface groups like hydroxyls promoting adsorption in the porous system and lead crystal precipitation on the activated carbon surface.  相似文献   

15.
A magnetic composite of silver/iron oxides/carbon nanotubes (Ag/Fe3O4/CNTs) was synthesized and used as an adsorbent for the preconcentration of mercury ions in water solutions at room temperature (25°C) in this study. The silver nanoparticles were supported on the magnetic CNTs. The modification enabled the composite had not only a high adsorption capacity for mercury ions (Hg2+) but also the magnetic isolation properties. A fast, sensitive, and simple method was successfully developed for the preconcentration and determination of trace amount of Hg2+ in water using the synthesized nanocomposite as adsorbent. The mercury concentration was determined by an atomic fluorescence spectrometer (AFS). The experimental conditions such as pH value, extraction temperature, extraction time, sample volume, eluent composition and concentration, sorbent amount, and coexisting ions were investigated for the optimization. A 500 mL of sample volume resulted in a preconcentration factor of 125. When a 200 mL of sample was employed, the limit of detection for Hg2+ was as low as 0.03 ng mL?1with relative standard deviation of 4.4% at 0.1 ng mL?1 (n = 7). The ease of synthesis and separation, the good adsorption capacity, and the satisfactory recovery will possibly make the composite an attractive adsorbent for the preconcentration of ultratrace Hg2+ in waters.  相似文献   

16.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

17.
A series of adsorbents were studied for removal efficiency of carbon disulfide (CS2) under micro-oxygen conditions. It was found that activated carbon modified by Cu and cobalt sulfonated phthalocyanine (CoSPc) denoted as ACCu–CoSPc showed significantly enhanced adsorption ability. Reaction temperature was found to be a key factor for adsorption, and 20 °C seems to be optimal for CS2 removal. Samples were analyzed by N2-BET, XRD, XPS, SEM–EDS and CO2-TPD. The characterization results demonstrated that large quantities of SO4 2? anions were formed and adsorbed in the reaction process. SO2, CS2 and COS were detected in the effluent gas generated from the temperature programmed desorption of ACCu–CoSPc–CS2. Therefore, it can be concluded that ACCu–CoSPc most likely acted as a catalyst in the adsorption/oxidation process on the surface of the impregnated sample. The generated sulfide and sulfur oxide can cover the active sites of adsorbents, resulting in pronounced reduction of adsorbent activity. Finally, the exhausted ACCu–CoSPc can be regenerated by thermal desorption.  相似文献   

18.
Adsorption of carbon dioxide on H‐ZSM‐5 zeolite (Si:Al=11.5:1) was studied by means of variable‐temperature FT‐IR spectroscopy, in the temperature range of 310–365 K. The adsorbed CO2 molecules interact with the zeolite Brønsted‐acid OH groups bringing about a characteristic red‐shift of the O? H stretching band from 3610 cm?1 to 3480 cm?1. Simultaneously, the ν3 mode of adsorbed CO2 is observed at 2345 cm?1. From the variation of integrated intensity of the IR absorption bands at both 3610 and 2345 cm?1, upon changing temperature (and CO2 equilibrium pressure), the standard adsorption enthalpy of CO2 on H‐ZSM‐5 is ΔH0=?31.2(±1) kJ mol?1 and the corresponding entropy change is ΔS0=?140(±10) J mol?1 K?1. These results are discussed in the context of available data for carbon dioxide adsorption on other protonic, and also alkali‐metal exchanged, zeolites.  相似文献   

19.
Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2/Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2) and condition (humid), CO2 permeance and CO2/Xe selectivity stabilized at 2.0×10?8 mol m?2 s?1 Pa?1 and 67, respectively, during long‐term operation (>320 h). This endows DD3R zeolite membranes great potential for on‐stream CO2 removal from the Xe‐based closed‐circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe‐recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.  相似文献   

20.
Porous copolymers of divinylbenzene (DVB) and acrylic acid (AA) having DVB:AA ratios of 6:4, 8:2 and 9:1 were prepared following a distillation-precipitation method, using toluene as the porogenic agent. The materials thus obtained, which showed specific surface area in the range of 380–600 m2 g?1 and pore volume in the range of 0.14–0.18 cm3 g?1, were investigated as possible adsorbents for CO2 capture from the flue gas of coal-fired power stations. For that purpose, the isosteric heat of adsorption (and CO2 adsorption capacity) was analysed from N2 and CO2 adsorption equilibrium isotherms obtained over a temperature range. For CO2, q st resulted to be in the range of 27–31 kJ mol?1 (the highest value corresponding to the 6:4 sample), while for N2 a value of q st ≈ 12 kJ mol?1 was obtained. Equilibrium adsorption capacity for CO2 (at ambient temperature and pressure) showed the value of about 1.35 mmol g?1. These results are discussed in the broader context of corresponding literature data for CO2 capture using protonic zeolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号