首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李继文  李薇  王川 《色谱》2013,31(11):1134-1139
采用气相色谱-质谱(GC-MS)对甲醇制烯烃(MTO)副产汽油中的C5~C7烯烃进行了详细的定性表征,对MTO副产汽油中的49个单烯烃、11个二烯烃和9个环烯烃共计69个C5~C7烯烃组分在聚甲基硅氧烷柱上的保留指数进行了测定和定性确认。根据GC-MS定性分析结果建立了MTO副产汽油中C5~C7烯烃的保留指数数据库,采用气相色谱对副产汽油中C5~C7烯烃组分进行了定量分析。定量结果表明:MTO汽油以C5~C7脂肪族烯烃为主,含有少量的二烯烃和环烯烃,烷烃和环烷烃含量很少。MTO副产汽油中C5~C7烯烃的详细表征为其综合利用提供了依据。  相似文献   

2.
The results of studies on the state of platinum in alumina-platinum reforming catalysts performed at the Institute of Hydrocarbon Processing, Siberian Branch of the Russian Academy of Sciences, in the past 20 years are summarized. The main result is the determination of the important role of the nonmetallic states of platinum (Ptσ) in adsorption and catalysis. The main principles of the development of highly efficient catalysts and technologies for their manufacture are formulated. Data on the industrial applications of new reforming catalysts at seven commercial reforming plants under conditions of reforming gasoline production (about 3 million tons per year) with research octane numbers of 96–100 are given. The applicability of new catalysts to the combined conversion of C3–C4 and C5+ alkane mixtures into high-octane motor fuel components is demonstrated. The results of the development of three modifications of a new technology for the manufacture of environmentally safe high-octane gasoline with the selectivity of formation of the target product close to 100% are presented.  相似文献   

3.
A GC and IR based protocol was developed for monitoring the isobutene dimerisation process wherein the complete characterisation of the products was carried out by GC coupled with mass spectrometry. In the dimerisation process, LPG from FCC process comprising a mixture of saturated and unsaturated C4 hydrocarbons is subjected to a dimerisation process using a catalyst to produce C8 hydrocarbons. The reaction is carried out keeping in view the demand for high-octane blending components in gasoline. The isooctene generated in the process (mainly from the dimerisation of isobutene) is converted into isooctane having the RON and MON value 100. The monitoring process requires the use of two different column chemistries, viz., a 100 m CPSIL PONA CB non-polar column for C8 and its isomers and an Alumina PLOT column for C4 hydrocarbons. A 100 m non-polar column does not separate the C4 mixture since the column is meant for gasoline range products containing C5 and above hydrocarbons. Therefore, a need was felt for an improvised method which can handle both the analyses simultaneously. A cryogenic oven program starting from 0 °C was developed for separating the isomers of C4 hydrocarbons and C8 hydrocarbons on a single column during the single run by Detailed Hydrocarbon Analyzer. The data obtained using the cryo programme was validated with data obtained using Alumina PLOT column on C4 mixture since the Alumina PLOT column is the widely accepted column chemistry for separating the C4 hydrocarbons. An IR method for the estimation of the total olefin content was developed using 2,2,4-trimethyl pentene-1 as the reference standard. The total olefins generated during the process were identified by GC–MS, quantified by DHA-FID and validated by infrared spectroscopy. A good correlation was found between GC and IR spectral results (correlation coefficient R 2  = 0.99).  相似文献   

4.
Comprehensive two‐dimensional gas chromatography (GC×GC) has been applied to the quantitation of oxygenates in reformulated gasoline. Target oxygenates were C1–C4 alcohols, tert‐pentanol, methyl tert‐butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert‐butyl ether (ETBE), and tert‐amyl methyl ether (TAME). These were separated from the gasoline matrix using a volatility‐based selectivity in the first chromatographic dimension, followed by a mixed‐phase polarity/shape selectivity in the second dimension. The high resolving power of this stationary phase combination completely separated all oxygenates except DIPE, ETBE, and TAME, which exhibited coelution with other nonpolar gasoline components. Oxygenates quantitation was achieved with the use of an internal standard, an FID detector, and calibration curves. Quantitation results are in good agreement with ASTM and EPA standard methods. When coupled with our previous method for BTEX and aromatics, a single GC×GC method can now quantitate MTBE, alcohols, BTEX, and aromatics in a one‐hour analysis.  相似文献   

5.
Summary Acid strength distribution and the distribution of aromatics formed in the FCC gasoline conversion reaction on a ZSM-5 zeolite with different Na contents have been studied. With increasing Na content in the ZSM-5 zeolite, the acid sites determined by NH3-TPD technique, especially the strong acid sites, clearly decrease. When used as catalyst for the aromatization reaction, the transformation of olefins in the FCC gasoline into aromatics is governed directly by the strong acid sites on the ZSM-5 catalyst. Only under the conditions that a ZSM-5 catalyst possesses suitable strong acid sites is reaction temperature favorable for the aromatics formed.  相似文献   

6.
甲醇两步制芳烃反应中低碳烯烃芳构化反应稳定性优异,为分析其内在机制,制备了不同硅铝比(nSiO2/nAl2O3)及Zn负载量的ZSM-5催化剂,以丙烯芳构化为模型反应,分析ZSM-5表面酸性对低碳烯烃芳构化反应性能的影响规律,并探究反应微观特性。发现当硅铝比由150降至75时,增加的酸密度促进了烯烃氢转移芳构化过程,使芳烃选择性由31.0%增至34.4%,但丙烯直接参与的氢转移过程也被强化,使丙烷产物选择性由28.2%增至36.0%。引入Zn助剂可将部分Br?nsted酸转变为ZnLewis酸,强化烯烃脱氢芳构化过程,使芳烃选择性进一步显著增加到62.4%。丙烯芳构化过程中芳烃烷基化深度比甲醇芳构化过程低,提升总芳烃选择性的同时,也明显抑制了难溶性积碳的形成,使反应稳定性明显提升。由此得出,甲醇两步制芳烃过程中甲醇制低碳烯烃过程对甲醇的预先消耗,抑制了低碳烯烃芳构化反应芳烃产物的深度烷基化,是该反应表现出优异稳定性的重要原因。  相似文献   

7.
A study has been carried out using HZSM-5, HY and Hβ zeolite-based catalysts in the pyrolysis of high density polyethylene (HDPE) continuously fed into a conical spouted bed reactor (CSBR) at 500 °C and atmospheric pressure, with the aim being to assess the yields and composition of the main products (both light olefins and automotive fuel hydrocarbons). Product streams have been grouped into seven lumps: light olefins (C2–C4) and light alkanes (<C4) in the gas fraction, the liquid fraction consisting of three lumps (non-aromatic C5–C11 compounds, single-ring aromatics and C11+ hydrocarbons), wax and coke. The results are compared with those already obtained in thermal pyrolysis in a CSBR and with those obtained in the literature using catalysts in bubbling fluidized beds. HZSM-5 zeolite-based catalyst is very selective to light olefins, ≈58 wt% once equilibrated; whereas high yields of non-aromatic C5–C11 products (around 45 wt%) are obtained with Hβ and HY zeolite-based catalysts. Wax yield increases as reactions proceed, especially with HY and Hβ zeolite-based catalysts, due to catalyst deactivation by coke formation. Product distribution with the different catalysts and their evolution throughout continuous operation by feeding HDPE is explained according to the different properties of the zeolites used.  相似文献   

8.
Chopra  Anju  Singh  Dheer  Manna  R.  Saravanan  S.  Sastry  M. I. S.  Patel  M. B.  Basu  B. 《Chromatographia》2014,77(11):845-851

A GC and IR based protocol was developed for monitoring the isobutene dimerisation process wherein the complete characterisation of the products was carried out by GC coupled with mass spectrometry. In the dimerisation process, LPG from FCC process comprising a mixture of saturated and unsaturated C4 hydrocarbons is subjected to a dimerisation process using a catalyst to produce C8 hydrocarbons. The reaction is carried out keeping in view the demand for high-octane blending components in gasoline. The isooctene generated in the process (mainly from the dimerisation of isobutene) is converted into isooctane having the RON and MON value 100. The monitoring process requires the use of two different column chemistries, viz., a 100 m CPSIL PONA CB non-polar column for C8 and its isomers and an Alumina PLOT column for C4 hydrocarbons. A 100 m non-polar column does not separate the C4 mixture since the column is meant for gasoline range products containing C5 and above hydrocarbons. Therefore, a need was felt for an improvised method which can handle both the analyses simultaneously. A cryogenic oven program starting from 0 °C was developed for separating the isomers of C4 hydrocarbons and C8 hydrocarbons on a single column during the single run by Detailed Hydrocarbon Analyzer. The data obtained using the cryo programme was validated with data obtained using Alumina PLOT column on C4 mixture since the Alumina PLOT column is the widely accepted column chemistry for separating the C4 hydrocarbons. An IR method for the estimation of the total olefin content was developed using 2,2,4-trimethyl pentene-1 as the reference standard. The total olefins generated during the process were identified by GC–MS, quantified by DHA-FID and validated by infrared spectroscopy. A good correlation was found between GC and IR spectral results (correlation coefficient R 2 = 0.99).

  相似文献   

9.
The complex [Ir(σ-carb)(CO)(PhCN)(PPh3)], where carb = -7-C6H5-1,2C2B10H10, was found to be an effective catalyst for homogeneous hydrogenation of terminal olefins and acetylenes at room temperature and atmospheric or subatmospheric hydrogen pressure. Internal olefins are not hydrogenated, but simple alk-1-enes are readily converted into the corresponding alkanes. Isomerization of the double bond catalyzed by the metal complex occurs at very small extent. Catalytic hydrogenation of olefins having carboxylate substituents on the unsaturated carbon atoms is prevented by the formation of thermally stable chelate hydridoalkyl complexes of the type I(H)(σ-CHRCHR′C(O)OR″) (σ-carb)(CO)(PPh3)]. Acetylenes are hydrogenated to alkenes. The alk-1-enes formed in the hydrogenation of the alkynes HCCR in turn undergo the more slow reactions either of hydrogenation to alkanes or isomerization to internal olefins which cannot be further hydrogenated. Hydrogenation of alkynes of the type RCCR′ is stereospecifically cis, yielding cis- olefins. Catalyzed cistrans isomerization reaction of these internal olefins occurs only to a negligeable extent.  相似文献   

10.
Density functional theory with the B3LYP hybrid functional and 6–31G* basis set was used to study the geometric and electronic structure of H2C = CHR (R = H, CH3, C2H5, C3H7, C4H9, and C5H11) olefins, their carbocations formed in the addition of the proton to the olefins, R′-S-H aliphatic thiols (R′ = H, CH3, C2H5, and C3H7), the products of the addition of thiols to carbocations, and the final products of the addition of thiols to olefins. The proton affinity of the olefins and the products of the addition of thiols to olefins was calculated. The conclusion was drawn that the limiting stage in the nonradical addition of thiols to olefins catalyzed by acids was proton transfer from the protonated reaction product to the olefin. The theoretical results were compared with the experimental data on the electrophilic addition of polymercaptan to heptene-1.  相似文献   

11.
The reaction mechanism of methanol conversion to hydrocarbons on HZSM-5 zeolite was studied. From the selectivity plots of products in an integral fixed-bed flow reactor, paraffins were classified as primary and secondary stable products, light olefins as primary unstable products, aromatics as primary and secondary unstable or stable products. The results of the 14C-labelled methanol reaction indicated that the C1–C5 surface intermediates generated by dimethyl ether / methanol equilibrium gave paraffins and olefins at 300°C. The concentration of intermediates and adsorbed methanol on ZSM-5 decreased with increasing temperature. The distribution of radioactivity showed that propylene played an important role in the autocatalysis of the reaction.  相似文献   

12.
朱秀华 《分析化学》2000,28(8):1013-1016
用气相色谱以程序升温方式分析了重整生成汽油,并将各组分升温保留时间转换为恒温保留指数。以各组分在OV-1和SE-54固定相上,同一柱温下的保留指数差及在各柱上的温度系数为三因素进行斜交因子分析和本征矢量旋转,给出了重整生成汽油样品中烷烃、烯烃、环烷烃、芳烃值,经气相色谱-质谱分析验证了结果的正确性,为重整成成汽油样品中烃的类别分析提供了一种新方法。  相似文献   

13.
Methane dehydroaromatization (MDA) over Mo-modified zeolite is a potential catalytic route for converting natural gas into valuable aromatics. However, the active species in this reaction are highly complex, involving diverse Mo species, acidic sites of zeolite, and organic molecules. Herein, we apply 1D 95Mo NMR and 2D 1H-95Mo heteronuclear correlation solid-state NMR spectroscopy to directly observe the active ensembles in the confined channels of Mo/ZSM-5 zeolite during the MDA reaction. We monitor the evolution of the spatial correlations of Mo species with the Brønsted acid sites and organic products (olefins and aromatics) in the zeolite channels. We identified two kinds of MoOxCy species, with the more carbidic one (MoOxCy-II) exhibiting higher activity for methane activation and benzene formation. The strong spatial interactions between the active Mo species and the organic species in the Mo/ZSM-5 pores are related to the MDA activity.  相似文献   

14.
cis,cis,cis-1,2,3,4-Tetrakis(diphenylphosphinomethyl)cyclopentane/[PdCl(C3H5)]2 efficiently catalyses the Heck reaction of disubstituted alkenes such as methyl crotonate, ethyl cinnamate, methyl methacrylate or α-methylstyrene with a variety of aryl halides. In the presence of 1,2-disubstituted alkenes the stereoselectivities of the reactions strongly depend on the substituents of the alkenes. Selectivities up to 97% in favor of E-isomers can be obtained for the addition to methyl crotonate. With the 1,1-disubstituted alkenes methyl methacrylate or α-methylstyrene mixtures of products are obtained.  相似文献   

15.
A gas chromatographic – mass spectrometric (GC-MS) method has been developed for detailed analysis of the hydrocarbon content of gasoline. The method is equipped with special software and includes the analysis of oxygenated compounds in a single run. The technique utilizes three basic components: the separating power of high resolution capillary gas chromatography, a mass spectrometer with a controllable ion source and ion fragmentation ratios, and unique software for data handling and preparation of reports. The C4 to C12 range of hydrocarbons in gasoline is covered by the method. A sample of unleaded gasoline from a gas station was analyzed without sample preparation. The results are discussed.  相似文献   

16.
CO2 valorization through chemical reactions attracts significant attention due to the mitigation of greenhouse gas effects. This article covers the catalytic hydrogenation of CO2 to methanol and dimethyl ether using Cu-Ho-Ga containing ZSM-5 and g-Al2O3 at atmospheric pressure and at temperatures of 210 °C and 260 °C using a CO2:H2 feed ratio of 1:3 and 1:9. In addition, the thermodynamic limitations of methanol and DME formation from CO2 was investigated at a temperature range of 100–400 °C. Cu-Ho-Ga/g-Al2O3 catalyst shows the highest formation rate of methanol (90.3 µmolCH3OH/gcat/h ) and DME (13.2 µmolDME/gcat/h) as well as the highest selectivity towards methanol and DME (39.9 %) at 210 °C using a CO2:H2 1:9 feed ratio. In both the thermodynamic analysis and reaction results, the higher concentration of H2 in the feed and lower reaction temperature resulted in higher DME selectivity and lower CO production rates.  相似文献   

17.
Six industrial and emerging catalytic technologies suitable for complete processing of all the components of associated petroleum gas, including methane and ethane, were reviewed. Process schemes for methanol, olefins, synthetic crude oil, gasoline, aromatics, and polymers were considered. A comparative analysis of the technologies in terms of demand for gas feedstock, potential markets for products, capital costs, and other economic indicators was carried out for the associated petroleum gas volumes typical for small and medium-sized oil fields.  相似文献   

18.
Cobalt cerium oxides, prepared using a co-precipitation procedure, were studied as catalysts for the conversion of synthesis gas to light olefins (C2-C4). Specifically, we studied the effect of a range of preparation variables, including the molar ratio of the [Co]/[Ce] of the precipitation solution, ageing time and calcination temperature. In addition, the effects of supports and promoters on the catalysts’ activity and selectivity and a range of reaction temperatures using synthesis gas with different H2/CO molar feed ratios were investigated. The catalyst containing a molar ratio of 80% Co and 20% Ce, aged for 2 h, supported with 15 wt% SiO2 without any promoter, at an operating temperature of 450 °C and an H2/CO feed ratio of 2/1 (GHSV = 4500 h?1), performed optimally for the conversion of synthesis gas to light olefins. The characterization of both the precursors and the calcined catalysts by powder X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller specific surface area measurements and thermal analysis methods, including TGA and DSC, show that all the preparation variables influenced the catalyst precursor structure.  相似文献   

19.
With various contents, Mn was introduced into carbon nanotubes (CNTs) supported cobalt catalysts and the obtained Mn‐Co/CNTs catalysts were investigated for CO hydrogenation to light alkenes and characterized by N2 adsorption, X‐ray diffraction (XRD), X‐ray photoelectron spectra (XPS), H2 temperature programmed reduction (TPR), CO temperature programmed desorption (TPD) and transmission electron microscope (TEM). The results indicate that the addition of a small amount of Mn (0.3 wt%) to CNTs‐supported Co catalyst significantly increased the selectivity of C2–C4 olefins and decreased the selectivity of CH4. However, with further addition of Mn to the cobalt catalysts, the CH4 selectivity decreased obviously along with the increase of the C5+ selectivity. Compared with the unpromoted catalysts, the Mn‐promoted cobalt catalysts increased the C2?–C4?/C20–C40 molar ratio.  相似文献   

20.
The objective of the present work was to study the reforming of simulated natural gas via the nonthermal plasma process with the focus on the production of hydrogen and higher hydrocarbons. The reforming of simulated natural gas was conducted in an alternating current (AC) gliding arc reactor under ambient conditions. The feed composition of the simulated natural gas contained a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. To investigate the effects of all gaseous hydrocarbons and CO2 present in the natural gas, the plasma reactor was operated with different feed compositions: pure CH4, CH4/He, CH4/C2H6/He, CH4/C2H6/C3H8/He and CH4/C2H6/C3H8/CO2. The results showed that the addition of gas components to the feed strongly influenced the reaction performance and the plasma stability. In comparisons among all the studied feed systems, both hydrogen and C2 hydrocarbon yields were found to depend on the feed gas composition in the following order: CH4/C2H6/C3H8/CO2 > CH4/C2H6/C3H8/He > CH4/C2H6/He > CH4/He > CH4. The maximum yields of hydrogen and C2 products of approximately 35% and 42%, respectively, were achieved in the CH4/C2H6/C3H8/CO2 feed system. In terms of energy consumption for producing hydrogen, the feed system of the CH4/C2H6/C3H8/CO2 mixture required the lowest input energy, in the range of 3.58 × 10−18–4.14 × 10−18 W s (22.35–25.82 eV) per molecule of produced hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号