首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capture of CO2 from flue gases produced by the combustion of fossil fuels and biomass in air is referred to as post-combustion capture. Chemisorbent processes are considered to be the most feasible method and are already at an advanced stage of development, but gas separation membranes are attracting more and more attention as a possible alternative. This paper describes a detailed parametric study of mass and energy balances for a simulated single membrane process. Typical operating conditions (CO2 concentration in the flue gas, pressure and temperature, etc.) together with the influence of the membrane quality (permeability, selectivity) and membrane area on membrane performance (CO2 separation degree and CO2 purity) are simulated over a wide range of parameters.  相似文献   

2.
Membrane separation of CO2 from natural gas, biogas, synthesis gas, and flu gas is a simple and energy‐efficient alternative to other separation techniques. But results for CO2‐selective permeance have always been achieved by randomly oriented and thick zeolite membranes. Thin, oriented membranes have great potential to realize high‐flux and high‐selectivity separation of mixtures at low energy cost. We now report a facile method for preparing silica MFI membranes in fluoride media on a graded alumina support. In the resulting membrane straight channels are uniformly vertically aligned and the membrane has a thickness of 0.5 μm. The membrane showed a separation selectivity of 109 for CO2/H2 mixtures and a CO2 permeance of 51×10?7 mol m?2 s?1 Pa?1 at ?35 °C, making it promising for practical CO2 separation from mixtures.  相似文献   

3.
Polymeric membranes have shown tremendous promise for the separation of CO2 from flue gas streams. However, few systematic studies have been conducted to better understand the impact that chemical functionalities have on membrane-based gas separation performance. To address this gap, we herein describe the synthesis and gas separation performance of a series of vinyl-addition polynorbornenes bearing various CO2-philic functional groups. To facilitate direct comparison between functional groups, each material was designed to maintain a common polymer backbone. Though the incorporation of CO2-philic moieties within a dense polymeric membrane is frequently hypothesized to enhance CO2 solubility, and thereby increase CO2/N2 selectivity, our results demonstrate that the incorporation of CO2-philic groups onto a common polymer backbone do not necessarily result in increased gas separation performance. Experimental and computational results demonstrate that the incorporation of amidoxime groups onto a polynorbornene backbone increase CO2/N2 selectivity, whereas commonly employed ethereal side chains only increased permeability.  相似文献   

4.
CO2‐binding organic liquids (CO2BOLs) are mixtures of a base (typically an amidine or guanidine) and an alcohol, and have been shown to reversibly capture and release CO2 with low reaction energies and high gravimetric CO2 capacity. We now report the ability of such liquid blends to chemically bind and release other acid gases such as CS2, COS, and SO2 analogously to CO2. These systems bind with sulfur‐containing acid gases to form colored ionic liquids with new O‐alkylxanthate, O‐alkylthiocarbonyl, and O‐alkylsulfite anions. The capture and thermal stripping of each acid gas from these systems and their applicability towards flue gas desulfurization is discussed.  相似文献   

5.
Reducing anthropogenic CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO2 emissions. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO2 capture.  相似文献   

6.
Glassy polyimide membranes are attractive for industrial applications in sour natural gas purification. Unfortunately, the lack of fundamental understanding of relationships between polyimide chemical structures and their gas transport properties in the presence of H2S constrains the design and engineering of advanced membranes for such challenging applications. Herein, 6FDA-based polyimide membranes with engineered structures were synthesized to tune their CO2/CH4 and H2S/CH4 separation performances and plasticization properties. Under ternary mixed sour gas feeds, controlling polymer chain packing and plasticization tendency of such polyimide membranes via tuning the chemical structures were found to offer better combined H2S and CO2 removal efficiency compared to conventional polymers. Fundamental insights into structure–property relationships of 6FDA-based polyimide membranes observed in this study offer guidance for next generation membranes for sour natural gas separation.  相似文献   

7.
Glassy polyimide membranes are attractive for industrial applications in sour natural gas purification. Unfortunately, the lack of fundamental understanding of relationships between polyimide chemical structures and their gas transport properties in the presence of H2S constrains the design and engineering of advanced membranes for such challenging applications. Herein, 6FDA‐based polyimide membranes with engineered structures were synthesized to tune their CO2/CH4 and H2S/CH4 separation performances and plasticization properties. Under ternary mixed sour gas feeds, controlling polymer chain packing and plasticization tendency of such polyimide membranes via tuning the chemical structures were found to offer better combined H2S and CO2 removal efficiency compared to conventional polymers. Fundamental insights into structure–property relationships of 6FDA‐based polyimide membranes observed in this study offer guidance for next generation membranes for sour natural gas separation.  相似文献   

8.
Natural gas demand has dramatically increased due to the emerging growth of the world economy and industry. Presently, CO2 and H2S content in gas fields accounts for up to 90% and 15%, respectively. Apart from fulfilling the market demand, CO2 and H2S removal from natural gas is critical due to their corrosive natures, the low heating value of natural gas and the greenhouse gas effect. To date, several gas fields have remained unexplored due to limited technologies to monetize the highly sour natural gas. A variety of conventional technologies have been implemented to purify natural gas such as absorption, adsorption and membrane and cryogenic separation. The application of these technologies in natural gas upgrading are also presented. Among these commercial technologies, cryogenic technology has advanced rapidly in gas separation and proven ideally suitable for bulk CO2 removal due to its independence from absorbents or adsorbents, which require a larger footprint, weight and energy. Present work comprehensively reviews the mechanisms and potential of the advanced nonconventional cryogenic separation technologies for processing of natural gas streams with high CO2 and H2S content. Moreover, the prospects of emerging cryogenic technologies for future commercialization exploitation are highlighted.  相似文献   

9.
Unusual CO2 storage in water‐saturated MOFs was investigated by combining experiment and simulation. It was found that the micropores of HKUST‐1 saturated with water provide an environment that is thermodynamically and kinetically favorable for CO2 capture, but not for N2 and H2 capture. We expect that this phenomenon have potential to be used for successful separation of CO2 from versatile flue streams and pre‐combustion gas.  相似文献   

10.
The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2/N2 and H2/CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic‐electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment.  相似文献   

11.
Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.  相似文献   

12.
Paul A. Webley 《Adsorption》2014,20(2-3):225-231
The capture of CO2 from process and flue gas streams and subsequent sequestration was first proposed as a greenhouse gas mitigation option in the 1990s. This proposal spawned a series of laboratory and field tests in CO2 capture which has now grown into a major world-wide research effort encompassing a myriad of capture technologies and ingenious flow sheets integrating power production and carbon capture. Simultaneously, the explosive growth in materials science in the last two decades has produced a wealth of new materials and knowledge providing us with new avenues to explore to fine tune CO2 adsorption and selectivity. Laboratory and field studies over the last decade have explored the synergy of process and materials to produce numerous CO2 capture technologies and materials based on cyclic adsorption processes. In this brief perspective, we look at some of these developments and comment on the application and limitations of adsorption process to CO2 capture. We identify major engineering obstacles to overcome as well as potential breakthroughs necessary to achieve commercialization of adsorption processes for CO2 capture. Our perspective is primarily restricted to post-combustion flue gas capture and CO2 capture from natural gas.  相似文献   

13.
Dispersion-corrected density functional theory method was performed to report on a high-performance adsorbent for removal of CO2 from the precombustion and natural gases. At first, the effect of Al atom impurity on the structural and electronic properties of B80 fullerene is studied. Then, the adsorption geometries and energies of gases (H2, CH4, or CO2) on the B80 and AlB79 (amphoteric adsorbents) are explored. The Al atom enhances reactivity of the cage toward the gases and the adsorption processes are more exothermic with low and high energy barriers for chemisorption of H2 and CO2, respectively. Stable chemisorption of CO2 on the AlB79 is validated by the high adsorption energy and large charge transfer, while the CH4 is just physically adsorbed on the AlB79. Further, the physisorbed gases can enhance field emission current of the AlB79 and in the continuous capturing of the gases, the magnetic moment of the cage is quenched. Furthermore, dependency of the electronic structure of the adsorbent on the gas adsorption is intensively studied. We suggest that the AlB79 could be a promising material for capture, storage, and separation of the gases and as a novel material for sustainable energy and sweetening process in the petroleum industry.  相似文献   

14.
Capture of CO2 from flue gas streams using adsorption processes must deal with the prospect of high humidity streams containing bulk CO2 as well as other impurities such as SO x , NO x , etc. Most studies to date have ignored this aspect of CO2 capture. In this study, we have experimentally examined the capture of CO2 from a 12% synthetic flue gas stream at a relative humidity of 95% at 30 °C. A 13X adsorbent was used and the migration of the water and its subsequent impact on capture performance was evaluated. Binary breakthrough of CO2/water vapor was performed and indicated a significant effect of water on CO2 adsorption capacity, as expected. Cyclic experiments indicate that the water zone migrates a quarter of the way into the column and stabilizes its position so that CO2 capture is still possible although decreased. The formation of a water zone creates a “cold spot” which has implications for the system performance. The recovery of CO2 dropped from 78.5% to 60% when moving from dry to wet flue gas while the productivity dropped by 22%. Although the concentration of water leaving the bed under vacuum was 27%(vol), the low vacuum pressure prevented condensation of water in this stream. However, the vacuum pump acted as a condenser and separator to remove bulk water. An important consequence of the presence of a water zone was to elevate the vacuum level thereby reducing CO2 working capacity. Thus although there is a detrimental effect of water on CO2 capture, long term recovery of CO2 is still possible in a single VSA process. Pre-drying of the flue gas steam is not required. However, careful consideration of the impact of water and accommodation thereof must be made particularly when the feed stream temperature increases resulting in higher feed water concentration.  相似文献   

15.
The gas adsorption and CO2 separation properties of 9 different metal-organic frameworks (MOFs) have been modelled with grand canonical Monte Carlo (GCMC) adsorption simulations. Adsorption of both pure gases and gas mixtures has been studied. MOFs are shown to have high selectivity for polar gases such as CO2 over non-polar gases such as N2. Selectivity of one polar gas from another can be altered by changing the polarity of the framework, pore geometry and also temperature. Often features that lead to good selectivity of CO2 from N2 also lead to poor selectivity of CO2 from H2O.  相似文献   

16.
利用自行搭建的膜分离实验台,考察了共存气态组分以及颗粒物对于聚二甲基硅氧烷/聚砜(PDMS-PSF)复合膜分离CO2性能的影响.结果表明,共存气态组分中O2对于膜分离CO2有抑制作用;由于SO2浓度显著低于CO2,在短时间内对膜分离CO2没影响;水汽可以促进CO2的分离;燃煤飞灰细颗粒在分离膜表面沉积会导致膜性能的恶化.在此基础上,采用模拟湿法烟气脱硫系统装置,进行了燃煤湿法脱硫净烟气环境下的膜分离CO2实验;在测试的50 h以内,水汽、SO2和O2的共同作用导致膜分离性能在前期有一定的提高,随着运行时间的延长,细颗粒物对膜的影响程度加大,导致PDMS-PSF复合膜的分离性能逐渐恶化,最终导致膜的CO2/N2分离因子和CO2渗透速率分别下降了17.91%和28.21%.  相似文献   

17.
Gas hydrates now are expected to be one of the most important future unconventional energy resources. In this paper, researches on gas hydrate exploitation in laboratory and field were reviewed and discussed from the aspects of energy efficiency. Different exploiting methods and different types of hydrate reservoir were selected to study their effects on energy efficiencies. Both laboratory studies and field tests have shown that the improved technologies can help to increase efficiency for gas hydrate exploitation. And it also showed the trend that gas hydrate exploitation started to change from permafrost to marine. Energy efficiency ratio(EER) and energy return on energy invested(EROI) were introduced as an indicator of efficiency for natural gas hydrate exploitation. An energy-efficient hydrate production process, called "Hydrate Chain Energy System(HCES)", including treatment of flue gas, replacement of CH4 with CO2, separation of CO2 from CH4, and storage and transportation of CH4 in hydrate form, was proposed for future natural gas hydrate exploitation.In the meanwhile, some problems, such as mechanism of CO2 replacement, mechanism of CO2 separation,CH4 storage and transportation are also needed to be solved for increasing the energy efficiency of gas hydrate exploitation.  相似文献   

18.
Small scale processing of flue gas with the goal of enriching the stream in CO2 for sequestration or use is an interesting application area for adsorption technology. For example, boiler flue gas which may contain up to 10 % (v/v) CO2 in air can be readily enriched to a stream containing >70 % CO2 which may be ideal for use within a process such as acidification, precipitation, stripping, etc. The challenge in these applications is producing high purity CO2 without excessive energy use and handling high concentrations of water vapor without the added complication of a pre-drying stage. In this study we have examined the use of microwave assisted vacuum as a way of rapidly directing thermal energy to the adsorbent surface to liberate water and CO2. Preliminary “proof-of-concept” pump down experiments were conducted on a small transparent adsorption column of 13X zeolite pre-saturated with a 12 % CO2 in N2 gas mixture. Both wet and dry gas tests were conducted. The addition of microwave radiation improved the rapid desorption of CO2 and water and improved the integrated CO2 purity in the blowdown stream from 60 to 80 %. In the case of dry CO2 mixtures, the enhancement is due to microwave heating of the 13X zeolite facilitated by the high cation density in the faujasite structure. In the case of water and CO2 desorption, the temperature rise of the adsorbent upon microwave heating was much lower than that predicted by simple heating suggesting that the microwave radiation is absorbed primarily by the adsorbed water. A simplified energy analysis suggests that brief exposure of an adsorbent to microwave radiation will raise the required vacuum level for regeneration of high humidity flue gas streams and may lead to an overall lower energy penalty. The selective ability of microwave radiation to target different species provides scope for optimized, compact, flue gas treatment systems.  相似文献   

19.
Anaerobic bacteria have been shown to be capable of converting CO, H2, and CO2 in synthesis gas to valuable products, such as acetate, methane, and ethanol. However, synthesis gas also contains small quantities of sulfur gases such as H2S and COS, that may inhibit the performance of these organisms. This paper compares the performance of several CO-utilizing and methanogenic bacteria in converting CO, CO2, and H2 to products in the presence of various concentrations of H2S and COS. The sulfur gas toxicity levels, growth, substrate uptake, and product formation for each organism are compared.  相似文献   

20.
Porous materials capable of selectively capturing CO2 from flue‐gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size‐exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore‐size in a coordination network, [Cu(quinoline‐5‐carboxyate)2]n ( Qc‐5‐Cu ) ena+bles ultra‐high selectivity for CO2 over N2 (SCN≈40 000) and CH4 (SCM≈3300). Qc‐5‐Cu‐sql‐β , a narrow pore polymorph of the square lattice ( sql ) coordination network Qc‐5‐Cu‐sql‐α, adsorbs CO2 while excluding both CH4 and N2. Experimental measurements and molecular modeling validate and explain the performance. Qc‐5‐Cu‐sql‐β is stable to moisture and its separation performance is unaffected by humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号