首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on external disturbances such as sound waves and vortices in the free stream, whereas those on the leading-edge receptivity to the three-dimensional free-stream turbulence(FST), which is more general in the nature,are rarely reported. In consideration of this, this work is devoted to investigating the receptivity process of three-dimensional Tollmien-Schlichting(T-S) wave packets excited by the three-dimensional FST in a flat-plate boundary layer numerically. The relations between the leading-edge receptivity and the turbulence intensity are established, and the influence of the FST directions on the propagation directions and group velocities of the excited T-S wave packets is studied. Moreover, the leading-edge receptivity to the anisotropic FST is also studied. This parametric investigation can contribute to the prediction of laminar-turbulent transition.  相似文献   

2.
The research on boundary-layer receptivity is the key issue for the laminarturbulent transition prediction in fluid mechanics. Many of the previous studies for local receptivity are on the basis of the parallel flow assumption which cannot accurately reflect the real physics. To overcome this disadvantage, local receptivity in the non-parallel boundary layer is studied in this paper by the direct numerical simulation (DNS). The difference between the non-parallel and parallel boundary layers on local receptivity is investigated. In addition, the effects of the disturbance frequency, the roughness location, and the multiple roughness elements on receptivity are also determined. Besides, the relations of receptivity with the amplitude of free-stream turbulence (FST), with the roughness height, and with the roughness length are ascertained as well. The Tollmien- Schlichting (T-S) wave packets are excited in the non-parallel boundary layer under the interaction of the FST and the localized wall roughness. A group of T-S waves are separated by the fast Fourier transform. The obtained results are in accordance with Dietz’s measurements, Wu’s theoretical calculations, and the linear stability theory (LST).  相似文献   

3.
The linear stability of the boundary layer developing on a flat plate in the presence of finite-amplitude, steady and spanwise periodic streamwise streaks is investigated. The streak amplitudes considered here are below the threshold for onset of the inviscid inflectional instability of sinuous perturbations. It is found that, as the amplitude of the streaks is increased, the most unstable viscous waves evolve from two-dimensional Tollmien–Schlichting waves into three-dimensional varicose fundamental modes which compare well with early experimental findings. The analysis of the growth rates of these modes confirms the stabilising effect of the streaks on the viscous instability and that this stabilising effect increases with the streak amplitude. Varicose subharmonic modes are also found to be unstable but they have growth rates which typically are an order of magnitude lower than those of fundamental modes. The perturbation kinetic energy production associated with the spanwise shear of the streaky flow is found to play an essential role in the observed stabilisation. The possible relevance of the streak stabilising role for applications in boundary layer transition delay is discussed.  相似文献   

4.
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien–Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.  相似文献   

5.
Transition initiated by a pair of oblique waves was investigated experimentally in a Blasius boundary layer flow by using hot-wire measurements and flow visualisation. The oblique waves were generated by periodic blowing and suction through an array of pipes connecting to the flow through a transverse slit in the flat plate model. The structure of the flow field is described and the amplitude of individual frequency-spanwise wave number modes was determined from Fourier transforms of the disturbance velocity. In contrast to results from investigations of oblique transition at subcritical flow conditions, the transition process at the present conditions suggests the combined effect of non-modal growth of streaks and a second stage with exponential growth of oblique waves to initiate the final breakdown stage.  相似文献   

6.
Previous studies on boundary layer transition at moderate levels of free stream turbulence (FST) have shown that the transition process can be promoted by the introduction of Tollmien-Schlichting (TS) waves. In the present work the interaction between localized boundary layer disturbances and controlled TS-waves is studied experimentally. The localized disturbances are generated either from a controlled free stream perturbation, or by means of suction or injection through a slot in the flat plate surface. Both methods result in boundary layer disturbances dominated by elongated streamwise streaks of high and low velocity in the streamwise component. A strong interaction is observed preferably for high frequency TS-waves, which are damped when generated separately, and the interaction starts as a local amplification of a wide band of low-frequency oblique waves. The later stages of the transition process can be identified as a non-linear interaction between the oblique structures, leading to regeneration of new and stronger streamwise streaks.  相似文献   

7.
IntroductionTheproblemofhowthedisturbancesinthefreestream ,suchassoundwaveandvorticesetc .,excitethedisturbancewavesintheboundarylayeriscalledreceptivityproblem[1,2 ].Throughthiscoursetheinitialconditionsofdisturbance,suchasitsamplitude,frequency ,andphasearedetermined .ThedispersionrelationsoffreestreamdisturbancesaredifferentfromthoseofT_Swaves.Asaresult,suchdisturbancesaloneinthefreestreamdonotexciteT_Swavesinboundarylayer.But,whentheperiodicdisturbancesinboundarylayerforcedbyfreestreamdi…  相似文献   

8.
The boundary-layer receptivity under the interaction of free-stream turbu- lence (FST) and localized wall roughness is studied by the direct numerical simulation (DNS) and the fast Fourier transform. The results show that the Tollmien-Schlichting (T-S) wave packets superposed by a group of stability, neutral, and instability T-S waves are generated in the boundary layer. The propagation speeds of the T-S wave packets are calculated. The relation among the boundary-layer receptivity response, the amplitude of the FST, the roughness height, and the roughness width is determined. The results agree well with Dietz’s experiments. The effect of the roughness geometries on the receptivity is also studied.  相似文献   

9.
The prediction of bypass transition remains an important problem in many engineering applications. This is largely because there is no suitable theoretical model for bypass transition and predictions are made using empirical models. This paper presents numerical results for the receptivity of a zero pressure gradient boundary layer subjected to simple freestream waveforms which are the constituent parts of a turbulent flow field. Significant receptivities are only obtained for a minority of freestream waveforms and these lead to two types of flow structure in the boundary layer. The first type of flow structure is essentially two dimensional in nature and consists of two rows of counter-rotating spanwise vortices and is induced by freestream waves of large normal and spanwise wavelength and streamwise wavelengths approximately equal to the boundary layer thickness. The second type of flow structure are the streamwise streaks frequently observed in flow visualisation experiments. These streaks are induced by freestream waves of long streamwise and normal wavelength and spanwise wavelengths in the range of 14.5-46 θ (1.7-5.4δ). The freestream waves can be formed of velocity components in any direction, however the boundary layer is most receptive to fluctuations that lie in a plane perpendicular to the streamwise direction. The overall receptivity to a full spectrum of waves typical of freestream turbulence is considered and is shown to have similar characteristics to those from experiments.  相似文献   

10.
Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed.Then,two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field,and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed.It was found that the change of the stability characteristics of the mean flow profile was the key issue.Furthermore,the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.  相似文献   

11.
Streamwise streaks generated from a pair of oblique waves and secondary instability of the streaks are studied in a two-dimensional bent channel. Nonlinear parabolized stability equations (NPSE) are employed to investigate streamwise streaks and vortices. A pair of oblique waves from linear stability analysis is imposed as initial disturbances. Generation of streamwise streaks and vortices and subsequent development are described in detail. The case of plane channel is also studied to provide comparable data. Through comparison, the effect of bent region is clearly highlighted. Results of parametric studies to examine the effect of Reynolds number, radius of curvature, and bent angle are also given and discussed in detail. Secondary instability analysis for the modified mean flow due to the streamwise streaks is carried out by solving a two-dimensional eigenvalue problem. Several unstable modes which can be classified into fundamental and subharmonic mode of secondary instability are identified. Among several unstable modes, two modes are turned out to be dominant modes. Details on these two modes including generation mechanism, typical pattern, and dependency on wave number and streak amplitude are discussed. It is found that the presence of bent channel can lead to early oblique-mode breakdown via strong growth of the streamwise streaks due to the curved section. Such large amplitude of streaks and its secondary instability eventually could trigger transition even for small amplitude oblique waves at subcritical channel Reynolds numbers.  相似文献   

12.
The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront.  相似文献   

13.
This paper presents numerical results for the receptivity of three laminar boundary layers with zero (ZPG), adverse (APG) and favourable (FPG) pressure gradients. Each boundary layer is subjected to a series of simple freestream waveforms which can be considered as constituent parts of either an isotropic or a non-isotropic turbulent freestream. Each freestream waveform has a single frequency in each spatial direction and is divided into two mutually perpendicular components. The first component has a zero spanwise velocity and hence lies in the streamwise normal plane whereas the second component lies in a plane which is perpendicular both to this plane and the spatial frequency vector. High boundary layer receptivities are only obtained for a minority of these waveforms and so only the resulting flow structures for these waveforms are considered in detail. The dominant flow structures are identified as either Tollmien Schlichting (T-S) waves or streaky structures. The streaky structures can be induced by both freestream components, but the response to the second component, which results in streamwise vortices in the freestream, is considerably stronger and occurs over a much larger streamwise frequency range. The boundary layer is only receptive to a relatively narrow band of spanwise wavelengths ranging from approximately one to four times the local boundary layer thickness. The APG leads to receptivities which are more than double those for the FPG case. The ratio of the freestream fluctuation streamwise wavelength to the distance from the plate leading edge is identified as an important influential parameter for receptivity leading to streaks. Significant T-S activity is only observed for APG, but is also detected for ZPG.  相似文献   

14.
Spatial evolution of a small amplitude localized disturbance introduced into the laminar boundary layer of a flat plate has been studied experimentally using the particle image velocimetry (PIV) technique. PIV data have been acquired in the spanwise and wall normal planes. Long and well defined high and low speed streaks are seen in the spanwise plane. The number of streaks are found to increase in the downstream direction. Breathing mode type oscillation of the boundary layer is observed. Associated with the streaks and akin to the bypass transition, ‘backward’ and ‘forward’ jet like structures of the fluctuating velocity components are observed.AS Banerjee: summer trainee, IIT Kharagpur, India  相似文献   

15.
Forward-/backward-facing steps in boundary-layer flows are often seen in engineering applications, and they have potential impacts on laminar-turbulent transition through scattering of the oncoming instability modes(e.g., Tollmien-Schlichting(T-S) waves). This issue is studied in the present paper by applying a local scattering framework, which is a rather generic mathematical framework on describing the mode scattering process. In this framework, a high-Reynolds-number triple-deck formalism is employed, and a transmission coefficient, defined as the ratio of the asymptotic amplitude of the instability mode downstream of the step to that upstream, is introduced. Through the systematical study, it has been found that both the forward-and backward-facing steps have a destabilizing effect on the oncoming T-S waves in subsonic boundary layers, this effect increases with the height of the step and/or the frequency of the T-S wave, and a backward-facing step(BFS) always has a greater impact than a forward-facing step(FFS). These facts agree with most of the previous investigations.However, one numerical study(WORNER, A., RIST, U., and WAGNER, S. Humps/steps influence on stability characteristics of two-dimensional laminar boundary layer. AIAA Journal, 41, 192–197(2003)), which was based on an ad-hoc configuration, showed an opposite impact of an FFS. Through the investigation on the specific configuration, it is revealed that the wrong conclusion was drawn by misinterpreting the numerical results.  相似文献   

16.
The evolution of low-speed streaks in the turbulent boundary layer of the minimum channel flow unit at a low Reynolds number is simulated by the direct numer- ical simulation (DNS) based on the standard Fourier-Chebyshev spectral method. The subharmonic sinuous (SS) mode for two spanwise-aligned low-speed streaks is excited by imposing the initial perturbations. The possibilities and the physical realities of the turbulent sustaining in the minimal channel unit are examined. Based on such a flow field environment, the evolution of the low-speed streaks during a cycle of turbulent sus- taining, including lift-up, oscillation, and breakdown, is investigated. The development of streamwise vortices and the dynamics of vortex structures are examined. The results show that the vortices generated from the same streak are staggered along the streamwise direction, while the vortices induced by different streaks tilt toward the normal direction due to the mutual induction effect. It is the spatial variations of the streamwise vortices that cause the lift-up of the streaks. By resolving the transport dynamics of enstrophy, the strength of the vortices is found to continuously grow in the logarithmic layer through the vortex stretching mechanism during the evolution of streaks. The enhancement of the vortices contributes to the spanwise oscillation and the following breakdown of the low-speed streaks.  相似文献   

17.
The three-dimensional, algebraically growing instability of a Blasius boundary layer is studied in the nonlinear regime, employing a nonparallel model based on boundary layer scalings. Adjoint-based optimization is used to determine the “optimal” steady leading-edge excitation that provides the maximum energy growth for a given initial energy. Like in the linear case, the largest transient growth is found for inlet streamwise vortices, that yield streamwise streaks downstream. Two different definitions of growth are employed, providing qualitatively similar results, although the spanwise wavenumbers of optimal growth differ by up to 20% in the two cases. The wavelength of the most amplified optimal disturbance increases with the initial amplitude. For large input amplitudes, significant deformations of the mean velocity field are found; in such cases it is reasonable to expect that nonlinear streaks may break down through a secondary instability.  相似文献   

18.
The aim of this work is to show the possibility of non-intrusively exciting second-mode instability waves with arbitrary frequency and amplitude in a hypersonic, planar boundary layer, by means of optical methods. Surface heat flux sensors were used to measure natural and artificially excited instability waves on a flat plate at zero angle of attack. The measurements were made using a stream-wise array of flush-mounted high-frequency heat flux sensors. In addition, surface pressure sensors were applied and show the instability waves, as well. The possibility to generate such waves by locally heating the model surface is shown.  相似文献   

19.
A constitutive law describing the Reynolds stresses in boundary layers undergoing laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, is used to improve an algebraic intermittency model for cases with transition in a separated layer influenced by a high level of free-stream turbulence. The intermittency model is combined with a k-ω turbulence model and the basic version, developed in previous work, functions well for bypass transition in attached boundary layers and for transition in separated boundary layers under a low free-stream turbulence level. The basic model version is extended by an additional production term in the transport equation for turbulent kinetic energy. A sensor detects the front part of a separated layer and activates the production term. The term expresses the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. The Klebanoff streaks cause faster breakdown by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level. The extended model does not alter the results of the basic model version for bypass transition in an attached boundary layer and for transition in a separated boundary layer under a low free-stream turbulence level. The extended model significantly improves the predictions of the previous model version for transition in a separated boundary layer under a high free-stream turbulence level.  相似文献   

20.
Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate with Mach number 4.5. Analysis of the result showed that, during the breakdown process in laminar-turbulent transition, the mechanism causing the mean flow profile to evolve swiftly from laminar to turbulent was that the modification of mean flow profile by the disturbance, when they became larger, leads to remarkable change of its stability characteristics. Though the most unstable T-S wave was of second mode for laminar flow, the first mode waves played the key role in the breakdown process in laminar-turbulent transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号