首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The trans-cis photoisomerization behavior of azobenzene-bipyridine ligand (dmpAB) was synchronized with coordination of the bipyridine moiety to copper. The coordination reaction can be reversibly controlled with reversible redox reaction of copper, to afford [Cu(dmpAB)(2)](+) in Cu(I) state and free dmpAB in Cu(II) state. UV irradiations to Cu(I) and Cu(II) samples form trans-rich and cis-rich compositions, respectively. The results enable us to control the trans-cis isomerization reversibly through Cu(II)/Cu(I) redox and a single UV light.  相似文献   

2.
Reactions of Cu I salts with 1,4,5,8,9,12-hexaazatriphenylene (HAT) afford three types of cationic coordination polymers depending on the anion present in the reaction solution. In the crystal structure of {[Cu(HAT)][BF4]x1/3(C6H6)}infinity, (1), Cu ions and HAT molecules form extended layers that are best described as strongly distorted honeycomb nets. The space between the layers is occupied by [BF4]- anions and solvent molecules. {[Cu(HAT)][PF6]}infinity, (2), crystallizes as a chiral (10,3)-a net with [PF6]- anions residing in the cavities of the three-dimensional metal-organic framework. The crystal structure of {[Cu4(HAT)3][SbF6]4x3C6H6}infinity, (3), is based on unique extended [Cu4(HAT)3]infinity "nanotubules" filled with solvent molecules and [SbF6]- anions.  相似文献   

3.
The metal-to-ligand-charge-transfer (MLCT) excited state of Cu(I) diimine complexes is known to undergo structural reorganization, transforming from a pseudotetrahedral D(2d) symmetry in the ground state to a flattened D(2) symmetry in the MLCT state, which allows ligation with a solvent molecule, forming an exciplex intermediate. Therefore, the structural factors that influence the coordination geometry change and the solvent accessibility to the copper center in the MLCT state could be used to control the excited state properties. In this study, we investigated an extreme case of the steric hindrance caused by attaching bulky tert-butyl groups in bis(2,9-di-tert-butyl-1,10-phenanthroline)copper(I), [Cu(I)(dtbp)(2)](+). The two bulky tert-butyl groups on the dtbp ligand lock the MLCT state into the pseudotetrahedral coordination geometry and completely block the solvent access to the copper center in the MLCT state of [Cu(I)(dtbp)(2)](+). Using ultrafast transient absorption spectroscopy and time-resolved emission spectroscopy, we investigated the MLCT state property changes due to the steric hindrance and demonstrated that [Cu(I)(dtbp)(2)](+) exhibited a long-lived emission but no subpicosecond component that was previously assigned as the flattening of the pseudotetrahedral coordination geometry. This suggests the retention of its pseudotetrahedral D(2d) symmetry and the blockage of the solvent accessibility. We made a comparison between the excited state dynamics of [Cu(I)(dtbp)(2)](+) with its mono-tert-butyl counterpart, bis(2-tert-butyl-1,10-phenanthroline)copper(I) [Cu(I)(tbp)(2)](+). The subpicosecond component assigned to the flattening of the D(2d) coordination geometry in the MLCT excited state was again present in the latter because the absence of a tert-butyl on the phenanthroline allows flattening to the pseudotetrahedral coordination geometry. Unlike the [Cu(I)(dtbp)(2)](+), [Cu(I)(tbp)(2)](+) exhibited no detectable emission at room temperature in solution. These results provide new insights into the manipulation of various excited state properties in Cu diimine complexes by certain key structural factors, enabling optimization of these systems for solar energy conversion applications.  相似文献   

4.
The complex 2-allyl-6-methylphenoxocopper(I) has been prepared by reaction between mesitylcopper(I) and 2-allyl-6-methylphenol. Crystallographic studies show that the compound is tetrameric with a distorted cubane-type copper(I)-oxygen core, and with additional π-coordination of the ligand to copper through the alkene functionality (ν(CC)=1520 cm−1). The ligands thus act both as chelates and as bridges between adjacent copper(I) centres. Copper(I) exhibits trigonal pyramidal coordination geometry with CuC distances to the CC group of 1.976(9) and 2.017(11) Å and CuO distances of 1.973(6), 2.021(6) and 2.577(6) Å, respectively.  相似文献   

5.
The reaction of the [{CpMo(CO)(2)}(2)(μ,η(2):η(2)-P(2))] (Cp=cyclopentadienyl) metallo-ligand 2 with pre-organized Cu(I) bi- and trimetallic precursors afforded new coordination complexes with unprecedented coordination modes for a Mo(2)P(2) complex. Variable-temperature solution and solid-state (31)P NMR spectroscopy measurements were performed and X-ray diffraction studies revealed an η(2):η(1) coordination mode for the Mo(2)P(2) unit of 2 in the Cu(I) bimetallic complexes 3 and 4. DFT calculations were carried out to highlight the bonding situation of this unprecedented coordination mode in the Cu(I) bimetallic compound 3. It is built up from a side-on coordination of the P-P σ bond to one copper ion and from the interaction of the lone pair of one phosphorus atom with the second copper ion. The remaining available lone pair of the second phosphorus atom can be involved as well to interact with an additional metal centre, as evidenced in the Cu(I) trimetallic compound 5 in which an η(2):η(1):η(1) coordination mode of the ligand 2 is observed. Derivative 3 can be used as a molecular clip to obtain discrete π-stacked dimers through a ligand exchange reaction between acetonitrile ligands and cyano-capped π-conjugated systems, indicating the stability of the new η(2):η(1) coordination mode.  相似文献   

6.
An improved synthesis of lithium phenyltris(methimazolyl)borate, Li[PhTm(Me)], (methimazole = 1-methylimidazole-2-thione) is described, and the structure of the methanol-solvated [Li(OHMe)4][PhTm(Me)] has been determined. The syntheses and characterization of complexes [M(PhTm(Me))(PR3)] (M = Cu, Ag, Au; R = Et, Ph;) are reported, and the complexes [Cu(PhTm(Me))(PPh3)], [Ag(PhTm(Me))(PEt3)] and [Au(PhTm(Me))(PEt3)] are crystallographically characterized, showing a progression from pseudo-tetrahedral geometry (copper, S3P coordination) to trigonal planar geometry (silver, S2P coordination) to linear geometry (gold, SP coordination). In addition, the copper(I) and silver(I) triphenylphosphine complexes of the adventitiously formed phenylhydrobis(methimazolyl)borate ligand, [M(PhBm(Me))(PPh3)], have been crystallographically characterized, showing both species to have a trigonal planar primary coordination sphere, with a secondary M...H-B interaction. Finally, reaction of copper(II) chloride with Li[PhTm(Me)] results in formation of a compound analyzing as [Cu(II)(PhTm(Me))Cl], although its extreme insolubility and marked instability have precluded its complete characterization. Attempts to prepare this by ultra-slow diffusion of the reactants through solvent blanks has led to isolation of a mixed-valence copper(I/II) methimazolate cluster, [Cu(I)10Cu(II)2(mt)12Cl2] and a copper(I) dimeric complex [Cu2(PhTm(Me))2], indicating that copper(II) ions oxidatively decompose the phenyltris(methimazolyl)borate anion.  相似文献   

7.
1H‐1,2,3‐triazoles can be prepared in good yield by the reaction of terminal alkyne and sodium azide in the presence of cuprous chloride at a temperature higher than 70°C. The alkyne is unactivated and the reaction has to be carried out under inert gas. At room temperature, the reaction first gives a Cu(I)‐azide complex which is converted to a Cu‐alkyne complex when the temperature is raised to higher than 70°C. The reaction of Cu(I)‐alkyne complex and azide ion dissociated from or coordinated to Cu(I) then gives 1H‐1,2,3‐triazoles.  相似文献   

8.
Reaction of [Cu(PPh(3))(2)(MeCN)(2)]PF(6) and trans-1,2-bis(4-pyridyl)ethylene (bpe) results in the trans-cis isomerization of the bpe and subsequent formation of a mixed-isomer linear coordination polymer over the course of several days or weeks depending on solvent. The one unique copper atom in the structure is coordinated to two bridging cis-bpe ligands, one bridging trans-bpe ligand, and one terminal triphenylphoshine ligand to create [Cu(trans-bpe)(0.5)(cis-bpe)(PPh(3))](+)( infinity ) zigzag chains. The reaction requires both visible light and Cu(I), and the crystallization of this particular coordination polymer is insensitive to the ratio of trans:cis isomers in solution, occurring both from trans-rich and cis-rich solutions.  相似文献   

9.
Solvothermal reaction of 4,4'-dithiodipyridine (dtdp) with CuI at 120 or 160 degrees C results in the formation of three new coordination networks formulated with [Cu4I4(tdp)2] (1; tdp = 4,4'-thiodipyridine), [Cu5I5(ptp)2] (2), and [Cu6I6(ptp)2] [3; ptp = 1-(4-pyridyl)-4-thiopyridine]. The starting dtdp reagent was unprecedentedly converted into two tdp and ptp ligands via new in situ cleavage of both S-S and S-C(sp2) bonds and temperature-dependent in situ ligand rearrangement of dtdp. 1 is a two-dimensional (2D) Cu4I4 cubane-like coordination network of 2-fold interpenetration. While in 2, the Cu8I8 and Cu2I2 cluster units are alternately connected by the mu2-sulfur bridges into one-dimensional inorganic chains along the a axis, which are further joined by the ptp spacers into a three-dimensional (3D) coordination network of 2-fold interpenetration. 3 is a 3D non-interpenetrating coordination network constructed with 2D inorganic (Cu2I2)n layers and the ptp spacers. 1 displays an intense orange-red emission light with a maximum at ca. 563 nm. While luminescence quenching occurs in 2 and 3 by electron transfer of a photoelectron to the electronegative acceptor molecule of ptp.  相似文献   

10.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is used to synthesize complex polymer architectures. In this work, we demonstrate the control of this reaction at 25 °C between polystyrene (PSTY) chains through modulating the catalytic activity by varying the combinations of copper source (i.e., Cu(I)Br or copper wire), ligand (PMDETA and/or triazole ligand), and solvent (toluene or DMF). The fastest rate of CuAAC was found using Cu(I)Br/PMDETA ligand in toluene, reaching near full conversion after 15 min at 25 °C. For the same catalysts system, DMF also gave fast rates of “click” (95% conversion in 25 min). Cu(0) wire in toluene gave a conversion of 98% after 600 min, a much higher rate than that observed for the same catalyst system used in DMF. When the PSTY had a chemically bound triazole ring close to the site of reaction, the rate of CuAAC in toluene increased significantly, 97% in 180 min at 25 °C, in agreement with our previously published results. This suggests that rapid rates can be obtained using copper wire and will have direct applications to the synthesis of compound where air, removal of copper, and reuse of the copper catalyst are required. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Zhao SB  Wang RY  Wang S 《Inorganic chemistry》2006,45(15):5830-5840
Five Cu(I) complexes [Cu2(ttab)(CH3CN)2][BF4]2 (1), [Cu(2)(ttab)(PPh3)2][BF4]2 (2), [Cu2(ttab)I2] (3), [Cu2(ttab)(I3)2] (4), and [Cu2(ttab)(I)BF4]n (5) with 1,2,4,5-tetra(7-azaindolyl)benzene (ttab) have been synthesized and characterized. The structures of compound 1, 2, 4, and 5 have been determined by single-crystal X-ray diffraction analyses, which established that 1, 2, and 4 are discrete dinuclear Cu2 compounds while compound 5 is a 1D coordination polymer with the I- ligand bridging two dinuclear Cu2 units. The ttab ligand in all four complexes adopts a 1,3-chelation mode. The Cu(I) center in all complexes is three-coordinate. Close contact between the Cu(I) center and the benzene ring in the ttab ligand was observed in all four structures, which is believed to play a role in stabilizing the three-coordinate geometry of the Cu(I) center. The crystals of 1, 2, and 5 contain channels in the lattice that host solvent molecules such as CH2Cl2 and toluene. Fluorescent measurements established that, in solution, compounds 1-3 display weak blue luminescence which originates from the ttab but is significantly red-shifted and has a much lower emission intensity, compared to the free ttab ligand. The application of compound 1 in C-N cross-coupling reactions was examined by using the reaction of phenyl halides with imidazole as a model system. For the reaction with phenyl iodide, 1 was found to be as effective a catalyst as the CuI/1,10-phenanthroline system. For the reaction with phenyl bromide, 1 is less effective than the CuI/1,10-phenanthroline system. Compound 1 reacts with O2 gas, as established by UV-vis spectra, but the oxidized products have not been characterized.  相似文献   

12.
A new copper-complexed [3]rotaxane consisting of two coordinating 30-membered rings threaded by a two-binding-site axis has been prepared in good yield from relatively simple organic fragments. The main specificity of the system originates from the stoppering reaction, based on "click" chemistry, and thus from the presence of two triazole groups at positions next to the bidentate chelates of the axis central part. The geometry of the coordinating atoms belonging to the axis is such that the triazole groups can either be part of the coordinating fragments when the metal center is 5-coordinate or be not at all involved in coordination to the metal when the latter is 4-coordinate. To be more specific, when the two complexed metal centers are monovalent copper(I) centers, the triazoles are not included in the metal coordination sphere, whereas when the metal centers are Cu(II) or Zn(2+), the triazole groups are bound to the metals. This is easily explained by the fact that Cu(I) is preferably 4-coordinate and Cu(II) and Zn(2+) are 5-coordinate. The interconversion between both situations (4- or 5-coordinate) can be quantitatively induced by metal exchange (Cu(I)/Zn(2+)) or by a redox process (Cu(II)/Cu(I)). It leads to important geometrical changes and in particular to a strong modification of the angle between the two rings. As a consequence, the two threaded rings undergo a motion which is reminiscent of a wing-flapping movement similar to that of birds. This flapping motion is fast and quantitative. It should lead to new functional molecular machines in the future.  相似文献   

13.
Luminescent copper(I)-based compounds have recently attracted much attention since they can reach very high emission quantum yields. Interestingly, Cu(I) clusters can also be emissive, and the extension from small molecules to larger architecture could represent the first step towards novel materials that could be obtained by programming the units to undergo self-assembly. However, for Cu(I) compounds the formation of supramolecular systems is challenging due to the coordinative diversity of copper centers. This works shows that this diversity can be exploited in the construction of responsive systems. In detail, the changes in the emissive profile of different aggregates formed in water by phosphine-thioether copper(I) derivatives were followed. Our results demonstrate that the self-assembly and disassembly of Cu(I)-based coordination polymeric nanoparticles (CPNs) is sensitive to solvent composition. The solvent-induced changes are related to modifications in the coordination sphere of copper at the molecular level, which alters not only the emission profile but also the morphology of the aggregates. Our findings are expected to inspire the construction of smart supramolecular systems based on dynamic coordinative metal centers.  相似文献   

14.
[Cu(2,9-dimethyl-1,10-phenanthroline)(2)](2+) and [Cu(6,6'-dimethyl-2,2'-bipyridine)(2)](2+/+) complexes with no coordinated solvent molecule were synthesized and the crystal structures were analyzed: the coordination geometry around the Cu(i) center was in the D(2d) symmetry while a D(2) structure was observed for the four-coordinate Cu(ii) complexes. Coordination of a water or an acetonitrile molecule was found in the trigonal plane of the five-coordinate Cu(ii) complex in the Tbp(trigonal bipyramidal) structure. Spectrophotometric analyses revealed that the D(2) structure of the Cu(ii) complex was retained in nitromethane, although a five-coordinate Tbp species (green in color), was readily formed upon dissolution of the solid (reddish brown) in acetonitrile. The electron self-exchange reaction between D(2d)-Cu(I) and D(2)-Cu(II), observed by the NMR method, was very rapid with k(ex)=(1.1 +/- 0.2) x 10(5) kg mol(-1) s(-1) at 25 degrees C (DeltaH*= 15.6 +/- 1.3 kJ mol(-1) and DeltaS*=-96 +/- 4 J mol(-1) K(-1)), which was more than 10 times larger than that reported for the self-exchange reaction between D(2d)-Cu(I) and Tbp-Cu(II) in acetonitrile. The cross reduction reactions of D(2)-Cu(ii) by ferrocene and decamethylferrocene in nitromethane exhibited a completely gated behavior, while the oxidation reaction of D(2d)-Cu(i) by [Ni(1,4,7-triazacyclononane)(2)](3+) in nitromethane estimated an identically large self-exchange rate constant to that directly obtained by the NMR method. The electron self-exchange rate constant estimated from the oxidation cross reaction in 50% v/v acetonitrile-nitromethane mixture was 10 times smaller than that observed in pure nitromethane. On the basis of the Principle of the Least Motion (PLM) and the Symmetry Rules, it was concluded that gated behaviors observed for the reduction reactions of the five-coordinate Cu(ii)-polypyridine complexes are related to the high-energy C(2v)--> D(2d) conformational change around Cu(ii), and that the electron self-exchange reactions of the Cu(ii)/(i) couples are always adiabatic through the C(2v) structures for both Cu(ii) and Cu(i) since the conformational changes between D(2d), D(2) and C(2v) structures for Cu(i) as well as the conformational change between Tbp and C(2v) structures for Cu(ii) are symmetry-allowed. The completely gated behavior observed for the reduction reactions of D(2)-Cu(ii) species in nitromethane was attributed to the very slow conformational change from the ground-state D(2) to the entatic D(2d) structure that is symmetry-forbidden for d(9) metal complexes: the very slow back reaction, the forbidden conformational change from entatic D(2d) to the ground-state D(2) structure, ensures that the rate of the reduction reaction is independent of the concentration of the reducing reagent.  相似文献   

15.
A synthetic approach to rotaxane architectures is described in which metal atoms catalyze covalent bond formation while simultaneously acting as the template for the assembly of the mechanically interlocked structure. This "active-metal" template strategy is exemplified using the Huisgen-Meldal-Fokin Cu(I)-catalyzed 1,3-cycloaddition of azides with terminal alkynes (the CuAAC "click" reaction). Coordination of Cu(I) to an endotopic pyridine-containing macrocycle allows the alkyne and azide to bind to metal atoms in such a way that the metal-mediated bond-forming reaction takes place through the cavity of the macrocycle--or macrocycles--forming a rotaxane. A variety of mono- and bidentate macrocyclic ligands are demonstrated to form [2]rotaxanes in this way, and by adding pyridine, the metal can turn over during the reaction, giving a catalytic active-metal template assembly process. Both the stoichiometric and catalytic versions of the reaction were also used to synthesize more complex two-station molecular shuttles. The dynamics of the translocation of the macrocycle by ligand exchange in these two-station shuttles could be controlled by coordination to different metal ions (rapid shuttling is observed with Cu(I), slow shuttling with Pd(II)). Under active-metal template reaction conditions that feature a high macrocycle:copper ratio, [3]rotaxanes (two macrocycles on a thread containing a single triazole ring) are also produced during the reaction. The latter observation shows that under these conditions the mechanism of the Cu(I)-catalyzed terminal alkyne-azide cycloaddition involves a reactive intermediate that features at least two metal ions.  相似文献   

16.
Electronic states and solvation of Cu and Ag aqua ions are investigated by comparing the Cu(2+) + e(-)--> Cu(+) and Ag(2+) + e(-)--> Ag(+) redox reactions using density functional-based computational methods. The coordination number of aqueous Cu(2+) is found to fluctuate between 5 and 6 and reduces to 2 for Cu(+), which forms a tightly bound linear dihydrate. Reduction of Ag(2+) changes the coordination number from 5 to 4. The energetics of the oxidation reactions is analyzed by comparing vertical ionization potentials, relaxation energies, and vertical electron affinities. The model is validated by a computation of the free energy of the full redox reaction Ag(2+) + Cu(+) --> Ag(+) + Cu(2+). Investigation of the one-electron states shows that the redox active frontier orbitals are confined to the energy gap between occupied and empty states of the pure solvent and localized on the metal ion hydration complex. The effect of solvent fluctuations on the electronic states is highlighted in a computation of the UV absorption spectrum of Cu(+) and Ag(+).  相似文献   

17.
Cu(I) coordination by organoselenium compounds was recently reported as a mechanism for their prevention of copper-mediated DNA damage. To establish whether direct Se-Cu coordination may be involved in selenium antioxidant activity, Cu(I) coordination of the selenoamino acids methyl-Se-cysteine (MeSeCys) and selenomethionine (SeMet) was investigated. NMR results in D(2)O indicate that Cu(I) binds to the Se atom of both MeSeCys and SeMet as well as the carboxylic acid oxygen atom(s) or amine nitrogen atoms. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) results confirm Se-Cu coordination, with the identification of a 2.4 ? Se-Cu vector in both the Se- and Cu-EXAFS data. XAS studies also show Cu(I) in an unusual three-coordinate environment with the additional two ligands arising from O/N (2.0 ?). DFT models of 1:1 Cu-selenoamino acid complexes suggest that both selenoamino acids coordinate Cu(I) through the selenium and amino groups, with the third ligand assumed to be water. These compounds represent the first structurally characterized copper(I) complexes with sulfur- or selenium-containing amino acids.  相似文献   

18.
A novel 3-D coordination polymer with trimeric copper (I) unit, [Cu(3)(CN)(IN)(2)](n)(IN = isonicotinate), was hydrothermally synthesized by the reaction of Cu(NO(3))(2).3H(2)O with isonicotinic and terephthalic acids. The structure was characterized to be a twofold interpenetrated 3-D coordination network polymer with two-coordinated copper(I). It has a powder SHG efficiency about that of KDP.  相似文献   

19.
Hydrothermal reaction of diaminomaleonitrile and copper salts under different conditions resulted in copper cyanide coordination polymers {[Cu(H 2O)(NH 3) 4][Cu 3(CN) 5].H 2O} n ( 1), {(CH 3) 4N[Cu(H 2O)(NH 3) 4][Cu 4(CN) 7]} n ( 2), and {(CH 3OH 2) 2[Cu 2(CN) 3]} n ( 3). 1 and 2 are new mixed-valence Cu(I,II), two 3D organic-inorganic molecular framework complexes that exhibit ionic inclusion. 3 is an open copper cyanide framework hosting a guest molecule. Cyanides in 1, 2, and 3 are produced by in situ C-C bond cleavage of diaminomaleonitrile, and then the remaining product is oxidized to form an oxalate group. The potential porosity of the hydrated coordination polymer 3 was estimated using a computational method based on Connolly's algorithm.  相似文献   

20.
The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather different architectures. Thus, the reaction between pym(2)S(2) and CuI leads to the formation of [Cu(3)I(pymS)(2)](n) (3) and [CuI(pym(2)S(3))] (pym(2)S(3) = pyrimidiltrisulfide) (4), while [Cu(3)Br(pymS)(2)](n) (5) is isolated in the reaction with CuBr(2). Finally, the solvothermal reactions between CuI and pyrimidine-2-thione (pymSH) in CH(2)Cl(2):CH(3)CN at different ratios, 1:1 or 2:1, give the polymers [Cu(2)I(2)(pymSH)(2)](n) (6) and [Cu(2)I(2)(pymSH)](n) (7), respectively. The structure of the new compounds has been determined by X-ray diffraction. The studies of the physical properties of the novel coordination polymers reveal that compounds 3 and 5 present excellent electrical conductivity values at room temperature, while compounds 1, 3, and 5-7 show luminescent strong red emission at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号