首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Physics letters. [Part B]》1987,195(3):417-422
Spontaneous breaking of gauge symmetries is studied in theories with nonlinearly realized scale invariance. The classically sliding vacuum expectation values are fixed through quantum corrections. The anomaly of the dilatation current determines the vacuum energy density as well as the dilaton mass. The coupling of gravity to matter is modified in such a way that the cosmological constant vanishes.  相似文献   

2.
We study the spontaneous symmetry breaking in a conformally invariant gravitational theory. We particularly emphasize on the nonminimal coupling of matter fields to gravity. By the nonminimal coupling we consider a local distinction between the conformal frames of metric of matter fieldsand the metric explicitly entering the vacuum sector. We suppose that these two frames are conformally related by a dilaton field. We show that the imposition of a condition on the variable mass term of a scalar field may lead to the spontaneous symmetry breaking. In this way the scalar field may imitate the Higgs field behavior. Attributing a constant configuration to the ground state of the Higgs field, a Higgs conformal frame is specified. We define the Higgs conformal frame as a cosmological frame which describes the large scale characteristics of the observed universe. In the cosmological frame the gravitational coupling acquires a correct value and one no longer deals with the vacuum energy problem. We then study a more general case by considering a variable configuration for the ground state of Higgs field. In this case we introduce a cosmological solution of themodel.  相似文献   

3.
The confrontation between Einstein's gravitation theory and experimental results, notably binary pulsar data, is summarized and its significance discussed. Experiment and theory agree at the 10−3 level or better. All the basic structures of Einstein's theory (coupling of gravity to matter; propagation and self-interaction of the gravitational field, including in strong-field conditions) have been verified. However, the theoretical possibility that scalar couplings be naturally driven toward zero by the cosmological expansion suggests that the present agreement between Einstein's theory and experiment might be compatible with the existence of a long-range scalar contribution to gravity (such as the dilaton field, or a moduli field, of string theory). This provides a new theoretical paradigm, and new motivations for improving the experimental tests of gravity.  相似文献   

4.
After a review of theoretical motivations to consider theories with direct couplings of scalar fields to Ricci and gauge curvature terms, we consider the dynamics and non-perturbative stabilization of a dilaton in three and in four dimensions. In particular, we derive generalized Coulomb potentials in the presence of a dilaton and discuss a low energy effective dilaton potential induced by instanton effects and the S-dual coupling to axions. We conclude with a discussion of cosmological implications of a light dilaton.  相似文献   

5.
We discuss the main cosmological implications of considering string-loop effects and a potential for the dilaton in the lowest order string effective action. Our framework is based on the effective model arising from regarding homogeneous and isotropic dilaton, metric and Yang-Mills field configurations. The issues of inflation, entropy crisis and the Polonyi problem as well as the problem of the cosmological constant are discussed.  相似文献   

6.
《Nuclear Physics B》1988,298(4):741-775
We consider scale invariant theories which couple gravity to Maxwell fields and antisymmetric tensor fields with a dilaton field. We exhibit in a unified way solutions representing black hole, space-time membrane, vortex and cosmological solutions. Their physical properties depend sensitively on the coupling constant of the dilaton field, there being critical value separating qualitatively different types of behaviour, e.g. the temperature of a charged black hole in the extreme limit. It is also shown that compactification into the 4-dimensional Minkowski space in terms of a membrane solution is possible in 10-dimensional supergravity model.  相似文献   

7.
We obtain cosmological solutions which admit emergent universe (EU) scenario in the framework of Einstein Gauss–Bonnet (GB) gravity coupled with a dilaton field in 4-dimensions. The coupling parameter of the GB terms and the dilaton in the theory are determined for obtaining an EU scenario. The corresponding dilaton potential which admits such scenario is determined. It is found that the GB terms coupled with a dilaton field plays an important role in describing the dynamics of the evolution of the early as well as the late universe. We note an interesting case where the GB term dominates initially in the asymptotic past regime, subsequently it decreases and thereafter its contribution in determining the dynamics of the evolution dominates once again. We note that the Einstein’s static universe solution permitted here is unstable which the asymptotic EU might follow. We also compare our EU model with supernova data.  相似文献   

8.
Recent analyses of cosmological data suggest the presence of an extra relativistic component beyond the Standard Model content. The Higgs–Dilaton cosmological model predicts the existence of a massless particle – the dilaton – associated with the spontaneous symmetry breaking of scale invariance and undetectable by any accelerator experiment. Its ultrarelativistic character makes it a suitable candidate for contributing to the effective number of light degrees of freedom in the Universe. In this Letter we analyze the dilaton production at the (p)reheating stage right after inflation and conclude that no extra relativistic degrees of freedom beyond those already present in the Standard Model are expected within the simplest Higgs–Dilaton scenario. The elusive dilaton remains thus essentially undetectable by any particle physics experiment or cosmological observation.  相似文献   

9.
10.
Quantum creation of massy particles can occur in the cosmological context without cost of energy. This fact is seized upon to construct a causal open homogeneous isotropic cosmology. The universe is conceived as the response of matter and the gravitational field to a spontaneous pointlike disturbance. Its history unfolds in two stages, creation and free expansion. The first stage gives rise to a “fireball.” The free expansion is extrapolated back to the “fireball.” The latter thus replaces the “big-bang,” thereby avoiding an initial singularity. Though not intrinsic to the theory it does suggest the interpretation of the cosmological part of the gravitational field as the scalar dilaton that is encountered in the dynamical generation of mass in conformally invariant theory.  相似文献   

11.
The current paradigm suggests that BH/WH formation in particles collisions will happen when a center-mass energy of colliding particles is sufficiently above the Planck scale (the transplanckian region). We confirm the classical geometrical cross section of the BH production reconsidering the process of two transplanckian particles collision in the rest frame of one of incident particles. This consideration permits to use the standard Thorne’s hoop conjecture for a matter compressed into a region to prove a variant of the conjecture dealing with a total amount of compressed energy in the case of colliding particles. We briefly mention that the process of BH formation is catalyzed by the negative cosmological constant and by a particular scalar matter, namely dilaton, while it is relaxed by the positive cosmological constant and at a critical value just turns off.  相似文献   

12.
The field equations derived from the low energy string effective action with a matter tensor describing a perfect fluid with a barotropic equation of state are solved iteratively using the long-wavelength approximation, i.e. the field equations are expanded by the number of spatial gradients. In the zero order, a quasi-isotropic solution is presented and compared with the general solution of the pure dilaton gravity. Possible cosmological models are analyzed from the point of view of the pre-big bang scenario. The second order solutions are found and their growing and decaying parts are studied.  相似文献   

13.
In this paper a quantum N = 4 super Yang-Mills theory perturbed by dilaton-coupled scalars and spinor fields, is considered. The induced effective action for such a theory is calculated on a dilaton-gravitational background using the conformal anomaly found via the AdS/CFT correspondence. Considering such an effective action (using the large N method) as a quantum correction to the classical gravity action with cosmological constant, we study the effect from the dilaton on the scale factor (this corresponds to an inflationary universe without dilaton). It is shown that, depending on the initial conditions for the dilaton, the dilaton may slow down, or accelerate, the inflation process. At late times, the dilaton is decaying exponentially. Different possible cases corresponding to a dilatonic dS Universe are analyzed with respect to the equations of motion.  相似文献   

14.
《Physics letters. [Part B]》1999,461(3):189-195
A recent study shows that Hawking radiation of a massless scalar field does not appear on the two-dimensional AdS2 black hole background. We shall study this issue by calculating absorption and reflection coefficients under dilaton coupling with the matter field. If the scalar field does not couple to the dilaton, then it is fully absorbed into the black hole without any outgoing mode. On the other hand, once it couples to the dilaton field, the outgoing mode of the massless scalar field exists, and the nontrivial Hawking radiation appears. Finally, we comment on this dilaton dependence of Hawking radiation in connection with a three-dimensional black hole.  相似文献   

15.
The ground state for Kaluza-Klein cosmological models with more than one dilaton field is considered. The dimensional reduction is performed and the equations of motion for the dilaton fields are considered. The normal modes of oscillation are found, one of them,, being the conformai factor in front of the metric for the true four-dimensional space-time. It is shown that a stable minimum exists when both the cosmological term and all the scalar curvatures of the extra-dimensional subspaces are negative. If all these scalar curvatures are positive, the extra-dimensional subspaces collapse and the quantum effects should be taken into account to stabilize them. All other combinations of the signs of scalar curvatures lead to decompactification of some of the subspaces. Some cosmological applications are discussed. One of them concerns the possibility of constructing Big-Bang cosmological models starting from a nonsingular higher-dimensional space-time.Supported by a Scholarship of the Comisión de Investigaciones Cientificas Argentina.  相似文献   

16.
A model of Einstein-Hilbert action subject to the scale transformation is studied. By introducing a dilaton field as a means of scale transformation a new action is obtained whose Einstein field equations are consistent with traceless matter with non-vanishing modified terms together with dynamical cosmological and gravitational coupling terms. The obtained modified Einstein equations are neither those in f(R) metric formalism nor the ones in f(ℛ) Palatini formalism, whereas the modified source terms are formally equivalent to those of f(R)=\frac12R2f({\mathcal{R}})=\frac{1}{2}{\mathcal{R}}^{2} gravity in Palatini formalism. The correspondence between the present model, the modified gravity theory, and Brans-Dicke theory with w = -\frac32\omega=-\frac{3}{2} is explicitly shown, provided the dilaton field is condensated to its vacuum state.  相似文献   

17.
In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid–gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of \(T>T_c\), we have no phase transition. When \(T=T_c\), the system admits a second-order phase transition, while for \(T=T_\mathrm{f}<T_c\) the system experiences a first-order transition. Interestingly, for \(T_\mathrm{f}<T<T_c\) we observe a zeroth-order phase transition in the presence of a dilaton field. This novel zeroth-order phase transition occurs due to a finite jump in the Gibbs free energy which is generated by the dilaton–electromagnetic coupling constant, \(\alpha \), for a certain range of pressure.  相似文献   

18.
Inhomogeneous cosmological models are consideredfor the low energy string cosmological effective action(tree level) in the absence of dilaton potential. Anon-singular and non-diagonal analytic solution isfound.  相似文献   

19.
We show that the phase transition from the decelerating universe to the accelerating universe, which is of relevance to the cosmological coincidence problem, is possible in the semiclassically quantized two-dimensional dilaton gravity by taking into account the noncommutative field variables during the finite time. Initially, the quantum-mechanically induced energy from the noncommutativity among the fields makes the early universe decelerate and subsequently the universe is accelerating because the dilaton driven cosmology becomes dominant later.  相似文献   

20.
In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time variations of the natural "constants" within the reach of near-future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号