首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physics-based modeling approach for partial slip behavior of a spherical contact is proposed. In this approach, elastic and elastic–plastic normal preload and preload-dependent friction coefficient models are integrated into the Cattaneo–Mindlin partial slip solution. Partial slip responses to cyclic tangential loading (fretting loops) obtained by this approach are favorably compared with experiments and finite element results from the literature. In addition to load-deformation curves, tangential stiffness of the contact and energy dissipation per fretting cycle predictions of the models are also provided. Finally, the critical assumptions of elastically similar bodies, smooth contact surface and negligible adhesion, and limitations of this physics-based modeling approach are discussed.  相似文献   

2.
为建立更完善和精确的结合面接触刚度模型,本文根据分形理论和摩擦学原理,从微观角度建立了考虑摩擦因素的结合面切向接触刚度分形预估模型.通过数值仿真分析研究了接触载荷、分形维数、摩擦系数和接触面积等因素对结合面切向接触刚度的影响.分析结果表明:结合面切向接触刚度随法向载荷和分形维数的增加而增大,而随分形尺度参数的增大而减小;摩擦系数对结合面切向接触刚度的影响较大,不同实际接触面积下的切向刚度相差较大;当分形维数较小时,摩擦系数对结合面切向刚度的影响将降低.这些研究对于进一步开展结合面的动力学特性研究具有重要意义.  相似文献   

3.
Friction and antifriction composite materials of multilayer structure [1] have recently become very popular in the engineering industry. Antifriction materials are widely used in sliding bearings, and friction materials are widely used in brakes. In the first case, the friction forces between the contacting surfaces are negligible, but in the second case, they are rather large. We use two examples of two plane problems from the theory of elasticity concerning the interaction between a die and a base formed by two elastic layers with different mechanical properties, which are rigidly connected with each other and with an undeformable support, to study how the geometric and mechanical parameters of the problem affect the stress-strain state of such a base, both on its surface and at its internal points, and to find the optimal parameters ensuring the required operation resources of the friction units thus modeled. We assume that the die foot is parabola-shaped or plane, the normal and tangential stresses in the contact region are related to each other by the Coulomb law, and the die is subjected to normal and tangential forces. In this case, the die-two-layer base is in the limit equilibtrium, and the die does not rotate in the process of deformation of the layer. In this setting, the problems were studied in [2] by solving the integral equations (IE) by the asymptotic method of large λ (see [3–7], etc.), which permits finding the effective solution only for relatively large thicknesses of layers compared with the dimensions of the contact region. But in real friction units mentioned above, the layers can have rather small relative thicknesses, and the large λ method cannot be used. We note that the other asymptotic methods (e.g., see [3]) efficient in the case of relatively small thicknesses of layers cannot yet be adapted to the case of friction forces in the contact region. In the present paper, we propose to use the collocation method following the scheme given in [8] to solve the corresponding integral equation of the first kind with logarithmic kernel. This method allows one to obtain sufficiently exact solutions practically for all values of the parameters of the problem with relatively small expenditure of the computer time for modern computers. The contact problem for a two-layer base was used in [9] for a close statement of the problem without friction forces in the contact region.  相似文献   

4.
Yildirim  B.  Yilmaz  K. B.  Comez  I.  Guler  M. A. 《Meccanica》2019,54(14):2183-2206

With the increasing research in the field of contact mechanics, different types of contact models have been investigated by many researchers by employing various complex material models. To ascertain the orthotropy effect and modeling parameters on a receding contact model, the double frictional receding contact problem for an orthotropic bilayer loaded by a cylindrical punch is taken into account in this study. Assuming plane strain sliding conditions, the governing equations are found analytically using Fourier integral transformation technique. Then, the resulting singular integral equations are solved numerically using an iterative method. The weight function describing the asymptotic behavior of the stresses are investigated in detail and powers of the stress singularities are provided. To control the trustworthiness and correctness of the analytical formulation and to compare the resulting stress distributions and contact boundaries, a numerically efficient finite element method was employed using augmented Lagrange contact algorithm. The aim of this paper is to investigate the orthotropy effect, modeling parameters and coefficients of friction on the surface and interface stresses, surface and interface contact boundaries, powers of stress singularities, weight function and to provide highly parametric benchmark results for tribological community in designing wear resistant systems.

  相似文献   

5.
A formulation for modeling and simulation of friction effects in spatial multibody systems is presented. Constraint reaction forces on rigid bodies that are connected by joints that support friction are derived as functions of Lagrange multipliers, using D’Alembert’s principle. Friction forces acting on bodies are calculated as a function of joint geometry, constraint reaction forces that are functions of Lagrange multipliers, and relative velocities at constraint contact points that are determined by system kinematics. Friction forces are implemented in index 0 differential-algebraic equations of motion that are solved numerically using explicit and implicit numerical integration methods. Spatial examples are presented, yielding accurate results and demonstrating that the systems are not stiff, even in the presence of friction and stiction.  相似文献   

6.
We study the problem of constrained uniform rotation of two precompressed elastic disks made of different materials with friction forces in the contact region taken into account. The exact solution of the problem is obtained by the Wiener-Hopf method.An important stage in the study of rolling of elastic bodies is the Hertz theory [1] of contact interaction of elastic bodies with smoothly varying curvature in the contact region under normal compression. Friction in the contact region is assumed to be negligible. If there are tangential forces and the friction in the contact region is taken into account, then the picture of contact interaction of elastic bodies changes significantly. Although the normal contact stress distribution strictly follows the Hertz theory for bodies with identical elastic properties and apparently slightly differs from the Hertz diagram for bodies made of different materials, the presence of tangential stresses results in the splitting of the contact region into the adhesion region and the slip region. This phenomenon was first established by Reynolds [2], who experimentally discovered slip regions near points of material entry in and exit from the contact region under constrained rolling of an aluminum cylinder on a rubber base. The theoretical justification of the partial slip phenomenon in the contact region, discovered by Reynolds [2], can be found in Carter [3] and Fromm [4]. Moreover, Fromm presents a complete solution of the problem of constrained uniform rotation of two identical disks. Apparently, Fromm was the first to consider the so-called “clamped” strain and postulated that slip is absent at the point at which the disk materials enter the contact region.Ishlinskii [5, 6] gave an engineering solution of the problem on slip in the contact region under rolling friction. Considering the problem on a rigid disk rolling on an elastic half-plane, we model this problem by an infinite set of elastic vertical rods using Winkler-Zimmermann type hypotheses. Numerous papers of other authors are surveyed in Johnson’s monograph [7].The exact solution of the problem on the constrained uniform rotation of precompressed rigid and elastic disks under the assumptions of Fromm’s theory is contained in the papers [8, 9]. In the present paper, we generalize the solution obtained in [8, 9] to the case of two elastic disks made of different materials.  相似文献   

7.
Load and depth sensing indentation methods have been widely used to characterize the mechanical properties of the thin film-substrate systems. The measurement accuracy critically depends on our knowledge of the effective elastic modulus of this heterogeneous system. In this work, based on the exact solution of the Green's function in Fourier space, we have derived an analytical relationship between the surface tractions and displacements, which depends on the ratio of the film thickness to contact size and the generalized Dundurs parameters that describe the modulus mismatch between the film and substrate materials. The use of the cumulative superposition method shows that the contact stiffness of any axisymmetric contact is the same as that of a flat-ended punch contact. Therefore, assuming a surface traction of the form of [1−(r/a)2]−1/2 with radial coordinate r and contact size a, we can obtain an approximate representation of the effective elastic moduli, which agree extremely well with the finite element simulations for both normal and tangential contacts. Motivated by a recently developed multidimensional nanocontact system, we also explore the dependence of the ratio of tangential to normal contact stiffness on the ratio of film thickness to contact radius and the Dundurs parameters. The analytical representations of the correction factors in the relationship between the contact stiffness and effective modulus are derived at infinite friction conditions.  相似文献   

8.
A theory is developed for the probability density functions of contact forces for cohesionless, frictional granular materials in quasi-static equilibrium. This theory is based on a maximum information entropy principle, with an expression for information entropy that is appropriate for granular materials. Entropy is maximized under the constraints of a prescribed stress and that the normal component of the contact force is compressive and that the tangential component of the contact force is limited by Coulomb friction. The theory results in a dependence of the probability density function for the tangential contact forces on the friction coefficient. The theoretical predictions are compared with results from discrete element simulations on isotropic, two-dimensional assemblies under hydrostatic stress. Good qualitative agreement is found for means and standard deviations of contact forces and the shape of the probability density functions, while the quantitative agreement is fairly good. Discrepancies between theory and simulations, such as the difference in shape of the probability density function for the normal force and the observed dependence on elastic properties of the exponential decay rate of tangential forces, are attributed to the fact that the method does not take into account any kinematics, which are essential in relation to elastic effects.  相似文献   

9.
In conventional modeling of a cable-pulley system, the cable must be finely meshed with Lagrangian elements for valid contact detections with pulleys, leading to extremely low efficiency. The sliding joint method based on the arbitrary-LagrangianEulerian(ALE) formulation still lacks an efficient cable element, and in particular, modeling of friction between a sliding joint and the cable has not been studied. This paper presents efficient multi-body modeling of a cable-pulley system with friction. A variablelength cable element with a node movable along the cable, which is described with ALE,is developed to mesh the cable. A transitional cable element is then proposed to model the contact part of the cable by fixing its two nodes to the two corresponding locations of the pulley. Friction of the cable-pulley is derived as a simple law of tension decay and embedded in the multi-body system modeling. It is simplified as a generalized friction force acting only on the arc-length coordinate. This approach can use a rough mesh on the cable, and is free of contact detections, thus significantly saving computation time.Several examples are presented to validate the proposed method, and show its effectiveness in real engineering applications.  相似文献   

10.
A method is proposed for calculating the stress state and fatigue damage accumulation in a two-layer elastic half-space with a system of defects between the layers under the action of normal and tangential distributed forces. The problem is solved by the boundary element method and the double Fourier transform. The effects of the surface layer thickness, degree of imperfection of the intermediate defective layer, and interlayer friction on the distribution of the maximal tangential stresses are analyzed. An example of studying the damage accumulation kinetics taking into account the change in the layer thickness due to surface fracture.  相似文献   

11.
王晓军  王琪 《力学学报》2015,47(5):814-821
基于接触力学理论和线性互补问题的算法, 给出了一种含接触、碰撞以及库伦干摩擦, 同时具有理想定常约束(铰链约束) 和非定常约束(驱动约束) 的平面多刚体系统动力学的建模与数值计算方法. 将系统中的每个物体视为刚体, 但考虑物体接触点的局部变形, 将物体间的法向接触力表示成嵌入量与嵌入速度的非线性函数,其切向摩擦力采用库伦干摩擦模型. 利用摩擦余量和接触点的切向加速度等概念, 给出了摩擦定律的互补关系式; 并利用事件驱动法, 将接触点的黏滞-滑移状态切换的判断及黏滞状态下摩擦力的计算问题转化成线性互补问题的求解. 利用第一类拉格朗日方程和鲍姆加藤约束稳定化方法建立了系统的动力学方程, 由此可降低约束的漂移, 并可求解该系统的运动、法向接触力和切向摩擦力, 还可以求解理想铰链约束力和驱动约束力. 最后以一个类似夯机的平面多刚体系统为例, 分析了其动力学特性, 并说明了相关算法的有效性.   相似文献   

12.
三方程线性弹性-阻尼DEM模型及碰撞参数确定   总被引:1,自引:1,他引:0  
建立了一种考虑法向接触力、切向接触力(含静滑动摩擦力及动滑动摩擦力)和力矩(含由切向力产生的力矩及静滚动摩擦力矩和动滚动摩擦力矩)的三方程线性弹性-阻尼离散单元模型,并将该模型应用到颗粒物料的三维数值模拟中,讨论了模型中几个重要碰撞参数--刚性系数、阻尼系数及摩擦系数的选择及其对计算结果的影响,同时也探讨了时间步长等计算参数对模拟结果的影响.为了验证算法和参数选择的正确性,本文对几个有代表性的颗粒系统进行了数值试验研究,并对计算结果进行了细致的分析,验证了新模型和参数选择的正确性.  相似文献   

13.
基于接触约束法和LuGre摩擦模型对在重力场作用下作大范围旋转运动的柔性梁系统和斜坡发生含摩擦斜碰撞的动力学问题进行研究.首先运用刚柔耦合的多体系统动力学理论对大范围运动的柔性梁进行离散化和动力学建模,在碰撞时采用冲量动量法求出跳跃速度,其次在法向上引入接触约束求解出碰撞力,在切向上采用LuGre摩擦模型分两种方式求解...  相似文献   

14.
15.
The role of the tangential (friction) stresses developed at the disc-jaw interface during the standardized realization of the Brazilian disc test is quantified. Sinusoidal variation of both the radial pressure and the friction stresses is considered. The pressure is maximized at the symmetry axis of the load distribution while friction is maximized at the mid-point of the contact semi-arc. Both load distributions (radial and frictional) are exerted along the actual contact length as it is developed during the loading procedure. The stress field all over the disc due to friction stresses is determined in closed form using the complex potentials technique. The solution obtained is applied for two materials both of brittle nature and of different relative deformability compared to steel (i.e. the material of the jaw). The stress field due to friction is compared for both materials with that due to radial pressure, and then, the two solutions are superimposed in order to quantify the total stress field. It is concluded that as one approaches the loading platens, non-ignorable tensile stresses are developed that could lead the disc to premature failure far from the disc’s center. The magnitude of these stresses strongly depends among others on the relative deformability of the disc’s and jaw’s materials since the latter dictates the extent of the loading rim.  相似文献   

16.
作大范围回转运动柔性梁斜碰撞动力学研究   总被引:14,自引:1,他引:13  
刘才山  陈滨 《力学学报》2000,32(4):457-465
为正确估计由于碰撞引起的多柔体系统动力学特性的变化,针对作大范围回转运动的柔性梁与一固定斜面发生斜碰撞的情况,在考虑刚柔耦合效应的多柔体系统动力学建模理论的基础上,利用假设模态法建立起重力场作用下的柔性梁一致线性化动力法向碰撞过程中系统的动力行为。基于Hertz接触理论和非线性阻尼项建立法向碰撞接触模型,基于线性切向接触刚度建立柔性梁切向碰撞接触模型,提出的数值算法保证了计算结果的合理性,给出的仿  相似文献   

17.
由于微机械的表面积与体积之比远大于宏机械,所以微机械中的表面阻力难以忽略,为了改善MEMS器件的性能和可靠性,必须对其影响进行研究.基于能量守衡法,本文建立了光滑平板和正方形、四棱锥两种微凸体粗糙表面平板的切向静电阻力模型,讨论了微小尺度、表面形貌、外加电压以及因流片制造工艺而产生的微凸体、凹坑或孔对两个相对运动的带电平板间的切向静电阻力的影响.分析表明:当平板宽度与两平板之间的距离之比、表面形貌因数和外加电压增大时,切向静电阻力也将随之增加;表面形貌因数则与微凸体在平板的总投影面积与平板面积之比成正比,随相对表面粗糙度增加而非线性增加.  相似文献   

18.
陈培见  陈少华 《力学进展》2014,44(1):201401
针对一类杨氏模量梯度变化的功能梯度材料, 考虑摩擦、微动磨损和黏附等因素, 综述了梯度材料有限尺寸、梯度变化规律、梯度涂层厚度、界面摩擦热、压头形状等对表面接触力学性能的影响; 根据不同接触模型中接触界面应力场分布, 分析多种因素影响下功能梯度材料表面抵抗磨损的能力; 最后给出了功能梯度材料接触力学研究中仍存在的主要科学问题及进一步研究展望.   相似文献   

19.
A mechanical and mathematical bending model for a stack of transversely isotropic plates is developed. The resolving equations for deflections and tangential displacements are supplemented with a system of differential equations for normal and tangential contact stresses. It is demonstrated that for stacks consisting of an arbitrary number of identical plates with no friction between them, the initial system of equations for contact stresses can be reduced to Helmholtz equations. This transition allows obtaining the complete eigenvalue spectrum for the Laplasian of the problem and, in special cases, eigenfunctions. They are Krylov functions when bending is cylindrical and Bessel functions when bending is axisymmetric  相似文献   

20.
An impact model for two-dimensional contact situations is developed which contains the main physical effects of a compliance element in the normal direction and a series of a compliance and Coulomb friction elements in the tangential direction. For systems with multiple impacts a unilateral formulation based on Poisson's hypothesis is used to describe the impulses which are transferred in the normal direction. The event of an impact is divided into two phases. The phase of compression ends with vanishing approaching velocity if normal impulses are transferred and is equivalent to a completely inelastic collision. The phase of expansion allows the bodies to separate under the action of the normal impulses whenever they are large enough. The absolute values of the tangential impulses are bounded by the magnitudes of the normal impulses, due to the Coulomb friction relationship on the impulse level. One part of the transferred tangential impulse during compression is assumed to be partly reversible which may be regarded as an application of Poisson's law. The remaining part is completely irreversible and considered friction. This formulation contains the special case of completely elastic tangential impacts as well as the situation when only Coulomb friction acts. It is proven that the presented impact model is always dissipative or energy preserving. The evaluation of the problem is done by solving one set of complementarity conditions during compression and a nearly identical set of equations during expansion. The theory is applied to some basic examples which demonstrate the difference between Newton's and Poisson's hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号