首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article details the local spin density determination in the cyano-bridged, two-dimensional, molecular based magnet K2Mn3(H2O)6[Mo(CN)7]2·6 H2O (Tc = 39 K). The crystal structure, determined at room temperature by X-ray diffraction, was redetermined at 50 K using unpolarised neutron diffraction. The importance of intermolecular hydrogen-bonding interactions is clearly demonstrated in this study, previously characterised with X-rays. The local spin density was determined from polarised neutron diffraction data at 4 K with an applied field of 3 T. Positive spin densities were observed on the manganese sites, consistent with high-spin d5 ions in octahedral fields, whilst a negative spin density was found on the molybdenum sites, signifying delocalisation onto the cyano ligands. The alternating sign of the spin populations on the metal sites, suggests that the primary MoIII–MnII interactions are antiferromagnetic in nature and the delocalisation onto the cyano-bridges clearly demonstrates the role of the ligand bridges in the magnetic exchange pathway.  相似文献   

2.
《Solid State Sciences》2007,9(6):506-514
The non-stoichiometric chromium titanium selenides Cr5−xTixSe8 (x  2, 3, 4) were prepared applying high-temperature solid-state reactions. The crystal structures have been refined with X-ray and neutron powder diffraction data applying the Rietveld method. The compounds crystallize in the space group F2/m (monoclinic, non-standard setting of C2/m) with four formula units per unit cell. The structures of all phases are related to the NiAs-type structure with ordered metal vacancies in every second metal-atom layer. Among the four different metal-atom sites two are fully occupied and the remaining two are only partially occupied. The MSe6 octahedra share edges within layers and faces between layers. Consequently, long M–M separations occur in the layers whereas short M–M contacts result between M atoms of face-sharing octahedra. The lattice parameters of the samples and the M–M/M–Se bonds exhibit a remarkable deviation from Végard's rule which is caused by the distribution of Ti and Cr atoms over the independent crystallographic sites. The refinement of neutron diffraction data reveals that for x  2, 3, Ti atoms are located on three metal sites and only for x  4 the fourth position is also occupied by Ti. For all compositions a pronounced preference of Ti for sites within the full metal-atom layers is observed. Furthermore, a significant depletion of one partially occupied metal-atom site is accompanied by an increase of occupancy of the other partially occupied metal-atom site. The magnetic properties in the high-temperature range show Curie–Weiss behavior with negative paramagnetic Curie temperatures θ indicating strong antiferromagnetic exchange interactions which get weaker with increasing Ti content. The zero-field-cooled and field-cooled susceptibility curves diverge at low temperatures suggesting spin-glass behavior. The freezing temperature is lowered with increasing Ti content.  相似文献   

3.
The magnetic properties and structures of RPt compounds (R = Gd, Tb, Dy, Ho, Er, and Tm) are presented. Below their Curie temperature the compounds exhibit ferromagnetic behavior. In GdPt, the spontaneous magnetization at 4.2°K (6.7 μBGd) and the small superimposed susceptibility suggest that the gadolinium moments are parallel and the exchange interactions are positive. In the three types of noncollinear magnetic structures observed in the other compounds the rare earth atoms are divided into two sublattices with different magnetization directions. They give rise to a ferromagnetic component associated with an antiferromagnetic component. These structures, which are analyzed in terms of crystal field effects, result from a competition between a magnetocrystalline anisotropy and positive exchange interactions of Heisenberg type.  相似文献   

4.
The plumbide CeZnPb was synthesized from the elements in a sealed tantalum ampoule. Its YPtAs-type structure was refined on the basis of single-crystal X-ray diffraction data: P63/mmc, a = 463.7(2) and c = 1669.6(6) pm, wR2 = 0.1161, 189 F2 values, and 12 variables. CeZnPb crystallizes with a superstructure of AlB2. The zinc and lead atoms form puckered [Zn3Pb3] hexagons, which are stacked in a sequence ABBA′. The Zn–Pb distances within the layers are 278 pm. The shortest interlayer distance occurs between the zinc atoms of adjacent layers (305 pm). Susceptibility measurements of CeZnPb show Curie–Weiss behavior with an experimental magnetic moment of 2.47(1) μB/mol CeZnPb. CeZnPb shows two antiferromagnetic transitions at TN1 = 3.8 K and TN2 = 2.6 K. Magnetization measurements at 2 K show two metamagnetic transitions at critical fields of approximately 1.1 and 7.0 kOe, underlining the antiparallel spin alignment at zero field. The electronic and magnetic structure is discussed based on scalar relativistic computations using the augmented spherical wave (ASW) method within density functional theory (DFT). As a result, our calculations employing the generalized gradient approximation (GGA) reveal a delicate competition of ferro and antiferromagnetic interactions. Only after properly taking into account the electronic correlations present in CeZnPb via a GGA + U treatment we are able to correctly describe the antiferromagnetic ground state. In addition, our calculations give a clue to the metamagnetic transitions as being due to the inherent geometric frustration of the cerium spin system.  相似文献   

5.
At mild hydrothermal conditions triclinic modifications of BaMP2O7 (M = Mn and/or Cu) have been succeeded. The method offers cheap, one step, impurity free and chemical flexible fabrication of family of metal phosphates that are potential low-dimensional quantum magnets. Partial isomorphous substitution of the Mn2+ by Cu2+ resulted into mixed-metal solid that has been structurally and magnetically characterized. Rietveld refinement study confirmed the structures and revealed the influence of transition metal substitution. The temperature-dependent magnetic measurements revealed that the system is paramagnetic in almost all temperature range and an apparent antiferromagnetic phase transition occurs around 5 K. Using the Curie–Weiss law, a Curie–Weiss temperature, θP = −11.0 K, and a Curie constant C = 3.39 emu K mol−1 was obtained. The small negative θP value and the χT behavior as a function of temperature reveal a weak antiferromagnetic interaction between the Cu2+/Mn2+magnetic centers.  相似文献   

6.
Using magnetic and magnetoelectric (ME) powder susceptibility measurements, the low temperature magnetic properties of antiferromagnetic UCrO4 and NdCrTiO5 have been studied. Their Néel temperatures TN are 44.5 and 20.5°K, respectively, the Cr3+ spin systems of both materials ordering cooperatively at TN. Below TN, the U5+ and Nd3+ moments are polarized due to their exchange interaction with the ordered Cr3+ spins. It is argued that, for both compounds, each of the two spin systems contributes to the ME susceptibilities. They are thus the first known ME materials possessing two distinct magnetic sublattices. The effective magnetic moments calculated from the magnetic susceptibilities are in good agreement with those previously reported by neutron diffraction studies.  相似文献   

7.
Polycrystalline samples of AgCuF3, isostructural with NaCuF3, were synthesized by solid state reaction and characterized by powder X-ray diffraction. The magnetic properties of AgCuF3 and NaCuF3 were examined by measuring their magnetic susceptibilities and evaluating their spin exchange interactions. The three-dimensional CuF3 network of corner-sharing CuF6 octahedra present in AgCuF3 and NaCuF3 shows a cooperative Jahn–Teller distortion such that their magnetic susceptibilities above 50 K are well described by an S = 1/2 Heisenberg uniform antiferromagnetic chain model with average spin exchange of J/kB  ?300 and ?180 K, respectively. The relative strengths of these interactions are well reproduced by spin dimer analysis based on tight-binding calculations, but not by mapping analysis based on first principles density functional calculations.  相似文献   

8.
《Polyhedron》2007,26(9-11):1787-1792
Two new H-bonding molecular magnets based on [Ni(mnt)2] monoanion have been synthesized and characterized structurally. In crystal of 1, [Ni(mnt)2] monoanions form the π-stacked sheets and the neighboring anionic sheets are held together via H-bonding interactions between –NH groups of diprotonated benzene-1,4-diamine and CN groups of mnt2− ligands. In crystal of 2, the neighboring anionic dimers form an anionic column via Ni…S contacting interactions, and these anionic stacks arrange into a sheet which is parallel to crystallographic ab-plane. The H-bonding interactions between diprotonated 1,4-diazabicyclo[2.2.2]octane cations and [Ni(mnt)2] monoanions as well as between cations and solvent MeCN molecules stabilize the lattice. Magnetic susceptibility measurement for 1 indicates an activated magnetic behavior in the high-temperature range together with a Curie tail at the lower temperature range, but the magnetic feature deviates from the magnetic exchange model for a spin dimer with S = 1/2. The magnetic nature of 2 reveals the presence of strongly antiferromagnetic interactions between the nearest-neighboring spins, the larger energy gap between spin ground and excited states results in a weakly paramagnetic property.  相似文献   

9.
The magnetization and Curie temperature of amorphous T80-xGdxB20 alloys (0≤x≤24) were investigated. The Gd moment is found to be 7μB in agreement with the theoretical value at 4.2 K. This would indicate a collinear spin structure for Gd. A mean field model has been used to explain the temperature dependence of the magnetization. This analysis allows to determine the spin value of T and the effective exchange interactions between T-T and T-Gd atoms which are found correlated with the T moment.  相似文献   

10.
The compounds CaFeSi2O6 (hedenbergite), CaNiGe2O6, CaCoGe2O6 and CaMnGe2O6 have been synthesized by hydrothermal or ceramic sintering techniques and were subsequently characterized by SQUID magnetometry and powder neutron diffraction in order to determine the magnetic properties and the spin structure at low temperature. All four compounds reveal the well-known clinopyroxene structure-type with monoclinic symmetry, space group C2/c, Z=4 at all temperatures investigated. Below 35 K hedenbergite shows a ferromagnetic (FM) coupling of spins within the infinite M1 chains of edge-sharing octahedra. This FM coupling dominates an antiferromagnetic (AFM) coupling between neighbouring chains. The magnetic moments lie within the a-c plane and form an angle of 43° with the crystallographic a-axis. Magnetic ordering in CaFeSi2O6 causes significant discontinuities in lattice parameters, Fe-O bond lengths and interatomic Fe-Fe distances through the magnetic phase transition, which could be detected from the Rietveld refinements of powder neutron diffraction data. CaCoGe2O6 and CaNiGe2O6 show magnetic ordering below 18 K, the spin structures are similar to the one in hedenbergite with an FM coupling within and an AFM coupling of spins between the M1 chains. The moments lie within the a-c plane. The paramagnetic Curie temperature, however, decreases from CaFeSi2O6 (+40.2 K) to CaCoGe2O6 (+20.1 K) and CaNiGe2O6 (−13.4 K), suggesting an altered interplay between the concurring AFM and FM interaction in and between the M1 chains. CaMnGe2O6 finally shows an AFM ordering below 11 K. Here the magnetic moments are mainly oriented along the a-axis with a small tilt out from the a-c plane.  相似文献   

11.
Powder neutron diffraction and magnetic measurements have shown that the ordered perovskite Ba2MnWO6 is antiferromagnetic with a Néel temperature of 7.5 ± 1°K. Below this temperature, ordering of the second kind occurs, with the Mn moments directed perpendicular to the [111] axis.  相似文献   

12.
Magnetic properties of the lyonsite-type phase, Cu3.9Fe3.4V6O24, that has been synthesized by a standard solid-state reaction method, were investigated by dc magnetization and electron paramagnetic resonance (EPR) techniques. Complex magnetic behavior and transition to the antiferromagnetic phase at liquid helium temperature have been revealed by measurements of dc susceptibility in ZFC and FC modes in the 2–300 K temperature range as well as static magnetization in magnetic fields up to 70 kOe. Strong antiferromagnetic interactions in clusters or chains of magnetic ions even at high temperatures has been deduced from the obtained value of the effective magnetic moment that was significantly smaller than expected for nominal valences of iron and copper ions. The presence of antiferromagnetic iron dimers in the high-temperature range, critical slowing down of spin fluctuations on approaching Neel temperature and the existence of magnetically isolated iron ions in the antiferromagnetic phase has been suggested from the temperature dependence of EPR parameters (g-factor, linewidth, integrated intensity) obtained by fitting the experimental spectrum with Lorentzian lineshape.  相似文献   

13.
《Solid State Sciences》2007,9(5):440-450
The complex perovskite lead iron tungsten niobium oxide, Pb(Fe0.6W0.2Nb0.2)O3 (PFWN) which belongs to the class of disordered magnetoelectrics, has been studied by X-ray and neutron powder diffraction, magnetic and Mössbauer spectroscopic measurements. Structural, dielectric and magnetic properties of PFWN are presented and reviewed. Magnetic measurements indicate that the most important interactions are of antiferromagnetic nature yielding TN = 300 K, however, with indications of a reentrant spin glass behaviour below 20 K. The parameters of Mössbauer spectra also support the existence of the magnetic order and are consistent with the presence of high-spin Fe3+ cations located in the octahedral B-site. Rietveld refinements of diffraction data at different temperatures between 10 and 700 K have been carried out. The long-range structure of PFWN is cubic (space group Pm−3m) over the whole temperature interval. The Fe, W and Nb cations were found to be disordered over the perovskite B-sites. The Pb cations show a position disorder along the 〈111〉 direction shifting from their high-symmetry position. At the temperatures below TN, an antiferromagnetic arrangement of the magnetic moments of Fe3+ cations in the B-site is proposed in accordance with the antiferromagnetic properties of PFWN. The factors governing the observed nuclear and magnetic structures of PFWN are discussed and compared with those of pure Pb(Fe0.67W0.33)O3, Pb(Fe0.5Nb0.5)O3 and other quaternary Pb-based perovskites containing iron.  相似文献   

14.
Three-dimensional coordination network solids of MII[C(CN)3]2 (M = V, Cr) composition possess interpenetrating rutile-like network structures. Each [C(CN)3]- bonds to three different metal ions in a triangular array, affording a geometrical topology akin to a Kagomé lattice leading to competing spin exchange interactions and spin frustration. The crystal and magnetic structure of CrII[C(CN)3] was determined by Rietveld refinement of the powder neutron diffraction data at 2 and 15 K and belongs to the orthorhombic space group Pmna [a = 7.313(1) A, b = 5.453(1) A, c = 10.640(1) A, Z = 2, T = 15 K]. Each CrII has a tetragonally elongated octahedral structure with four Cr-N(1) distances of 2.077(2) A and two significantly longer axial Cr-N(2) distances of 2.452(2) A. Magnetic susceptibility measurements between 1.7 and 300 K reveal strong antiferromagnetic interactions for both V- and Cr[C(CN)3]2 with theta = -67 and -46 K, respectively, from a fit to the Curie-Weiss law. Long-range magnetic ordering does not occur for M = V above 1.7 K, in contrast to M = Cr, which antiferromagnetically orders at low temperature. This is attributed to Jahn-Teller distorted CrII site relieving frustration in one dimension, leading to 2-D Ising antiferromagnetism, as observed by both magnetic susceptibility and specific heat studies. Neutron diffraction experiments at 2 K for Cr[C(CN)3]2 yielded additional Bragg reflections as a result of antiferromagnetic ordering with the moments on the CrII atoms aligned parallel to c and 4.7(1) microB. Fitting of the magnetic order parameter to a power law yielded TN = 6.12(4) K and beta = 0.18(1) consistent with 2-D Ising behavior. A TN of 6.13 K is also observed from the specific heat data.  相似文献   

15.
The preparation, X-ray crystallography and magnetic investigation of the compounds PPh4[Cr(bipy)(CN)4].2 CH3CN.H2O (1) (mononuclear), [[Cr(bipy)(CN)4]2Mn-(H2O)4].4H2O (2) (trinuclear), [[Cr(bipy)(CN)4]2Mn(H2O)2] (3) (chain) and [[Cr(bipy)(CN)4]2Mn(H2O)].H2O.CH3CN (4) (double chain) [bipy=2,2'-bipyridine; PPh4 (+)=tetraphenylphosphonium] are described herein. The [Cr(bipy)(CN)4]- unit act either as a monodentate (2) or bis-monodentate (3) ligand toward the manganese atom through one (2) or two (3) of its four cyanide groups. The manganese atom is six-coordinate with two (2) or four (3) cyanide nitrogens and four (2) or two (3) water molecules building a distorted octahedral environment. In 4, two chains of 3 are pillared through interchain Mn-N-C-Cr links which replace one of the two trans-coordinated water molecules at the manganese atom to afford a double chain structure where bis- and tris-monodenate coordination modes of [Cr(bipy)(CN)4]- coexist. The magnetic properties of 1-4 were investigated in the temperature range 1.9-300 K. A Curie law behaviour for a magnetically isolated spin quartet is observed for 1. A significant antiferromagnetic interaction between CrIII and MnII through the single cyanide bridge [J=-6.2 cm(-1), the Hamiltonian being defined as H=-J(SCr1.SMn+SCr2.SMn] occurs in 2 leading to a low-lying spin doublet which is fully populated at T <5 K. A metamagnetic behaviour is observed for 3 and 4 [the values of the critical field Hc being ca. 3000 (3) and 1500 Oe (4)] which is associated to the occurrence of weak interchain antiferromagnetic interactions between ferrimagnetic Cr2III MnII chains. The analysis of the exchange pathways in 2-4 through DFT type calculations together with the magnetic bevaviour simulation using the quantum Monte Carlo methodology provided a good understanding of their magnetic properties.  相似文献   

16.
《Solid State Sciences》2007,9(2):196-204
Rietveld refinement of the crystal and magnetic structures of LixMnO2 (x = 0.98, 1.00, 1.02) are performed using neutron and X-ray measurements. A significant structural disorder due to the presence of manganese ions in lithium positions (MnLi) and lithium ions in manganese ones (LiMn) is found to be a common feature of Li0.98MnO2, Li1.00MnO2, and Li1.02MnO2.An essential anisotropy of the thermal-expansion coefficients of the lithium manganese oxides is observed in the temperature range of 1.5–300 K. Furthermore, the distortion of the oxygen octahedral environment around the manganese ions decreases when the temperature lowers. This is attributed to the strong exchange interactions between parallel exchange-coupled Mn chains. First-principles calculations of the effective exchange-interaction parameters in Li16Mn16O32 confirm the essential antiferromagnetic interactions between the chains. In addition, a hypothetical (Li15Mn)Mn16O32 structure where a lithium atom located between the Mn double layers is replaced by a manganese atom is considered. The calculations reveal that the presence of such defects results in appearance of a ferromagnetic component that agrees with the magnetic measurements.  相似文献   

17.
The photochemical reaction between the antiferromagnetic complex (C5H5-CrSCMe3)2S (I) (containing a Cr---Cr bond 2.689 Å long) and Fe(CO)5 results in the elimination of two carbonyl groups and one tert-butyl radical to give (C5H5Cr)22-SCMe3)(μ3-S)2 · Fe(CO)3 (III). As determined by X-ray diffraction, III contains a Cr---Cr bond of almost the same length as in I (2.707 Å), together with one thiolate and two sulphide bridges. The latter are also linked with the Fe atom of the Fe(CO)3 moiety (average Fe---S bond length 2.300 Å). Fe also forms a direct bond, 2.726 Å long, with one of the Cr atoms, whereas its distance from the other Cr atom (3.110 Å) is characteristic for non-bonded interactions. Complex III is antiferromagnetic, the exchange parameter, −2J, values for Cr---Cr, Cr(1)---Fe and Cr(2)…Fe are 380, 2600 and 170 cm−1, respectively. The magnetic properties of III are discussed in terms of the “exchange channel model”. The contributions from indirect interactions through bridging ligands are shown to be insignificant compared with direct exchange involving metal---metal bonds. The effects of steric factors and of the nature of the M(CO)n fragments on the chemical transformations of (C5H5CrSCMe3)2S · M(CO)n are discussed.  相似文献   

18.
The room-temperature crystal structure of the brownmillerite SrCaMnGaO5+δ (δ=0.035) has been refined from neutron powder diffraction data; space group Ima2, a=15.7817(6), b=5.4925(2), c=5.3196(2)> Å. Mn and Ga occupy 99.0(2)% of the 6- and 4-coordinate sites, respectively. A combination of magnetometry, neutron diffraction and μSR spectroscopy has shown that the compound orders magnetically at 180 K, and that the low-temperature phase has a G-type antiferromagnetic structure, with an ordered magnetic moment of 3.30(2) μB per Mn at 2 K. Displaced hysteresis loops provide evidence that the atomic moment has an additional, glassy component. Magnetometry shows that significant short-range magnetic interactions persist above 180 K, and μSR that the spin fluctuations are thermally activated in this temperature region. The compound is an electrical insulator which at 159 K shows an unusually large magnetoresistance of 85% in 6 T, increasing to 90% in 13 T.  相似文献   

19.
Perovskite‐type phases SrFe1–xTixO3–y with 0.1 ≤ x ≤ 0.7 have been prepared from the oxides, and, in order to reach high oxygen contents and FeIV fractions, annealed at oxygen pressures of 60 MPa. The materials were characterised by powder x‐ray and neutron diffraction, 57Fe Mössbauer spectroscopy, and magnetic susceptibility measurements. All samples of the series crystallise in a cubic perovskite structure and reveal considerable oxygen deficiency. The Mössbauer parameters suggest that for x = 0.1, where the FeIV fraction is about 90%, the itinerant electronic state of SrFeO3 is essentially retained. In materials with larger x increasing amounts of TiIV and FeIII ions lead to a stronger localisation of the σ* (Fe 3 d – O 2 p) electrons. There is no evidence for a charge disproportionation of FeIV in any of the materials. Magnetic susceptibility measurements show a divergence of zero‐field cooled and field‐cooled data below a temperature Tm and deviations from Curie‐Weiss behaviour above Tm. The data are indicative of spin‐glass behaviour due to disorder and competing exchange interactions.  相似文献   

20.
The nature of chemical bonds in a ferredoxin‐type [2Fe–2S] cluster has been investigated on the basis of natural orbitals and several bond indices developed in Parts I and II of this study. The broken‐symmetry hybrid density functional theory (BS‐HDFT) with spin projection approach has been applied to elucidate the natural orbitals and occupation numbers for a model compound [Fe2S2(SCH3)4] (1), which is used to calculate the indices. The molecular structure, vibration frequencies, electronic structures, and magnetic properties in both oxidized and reduced forms of 1 have been calculated and compared with the experimental values. The optimized molecular structures after approximate spin projection have been in good agreement with experimental data. The structure changes upon one‐electron reduction have been slight (<0.1 Å) and only limited around one side of the Fe atom. Raman and infrared (IR) spectra have been calculated, and their vibration modes have been assigned using the bridging 34S isotope substitution. Their magnetic properties have been examined in terms of spin Hamiltonians that contain exchange interactions and double exchange interactions. The BS‐HDFT methods have provided the magnetic parameters; i.e., effective exchange integral (J) values and valence delocalization (B) values, which agree with the experimental results. It is found that large charge transfer (CT) from the bridging sulfur to the iron atoms has led to the strong antiferromagnetic interactions between iron atoms. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号