首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The present work aims to investigate numerically the flowfield and heat transfer process in gas-solid suspension in a vertical pneumatic conveying pipe. The Eulerian-Lagrangian model is used to simulate the flow of the two-phases. The gas phase is simulated based on Reynolds Average Navier-Stokes equations (RANS) with low Reynolds number k-ε model, while particle tracking procedure is used for the solid phase. An anisotropic model is used to calculate the Reynolds stresses and the turbulent Prandtl number is calculated as a function of the turbulent viscosity. The model takes into account the lift and drag forces and the effect of particle rotation as well as the particles dispersion by turbulence effect. The effects of inter-particles collisions and turbulence modulation by the solid particles, i.e. four-way coupling, are also included in the model. Comparisons between different models for turbulence modulation with experimental data are carried out to select the best model. The model is validated against published experimental data for velocities of the two phases, turbulence intensity, solids concentration, pressure drop, heat transfer rates and Nusselt number distribution. The comparisons indicate that the present model is able to predict the complex interaction between the two phases in non-isothermal gas-solid flow in the tested range. The results indicate that the particle-particle collision, turbulence dispersion and lift force play a key role in the concentration distribution. In addition, the heat transfer rate increases as the mass loading ratio increases and Nusselt number increases as the pipe diameter increases.  相似文献   

2.
3.
A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731–743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy.  相似文献   

4.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Experiments indicate that particle clusters that form in fluidized–bed risers can enhance gas-phase velocity fluctuations. Direct numerical simulations (DNS) of turbulent flow past uniform and clustered configurations of fixed particle assemblies at the same solid volume fraction are performed to gain insight into particle clustering effects on gas-phase turbulence, and to guide model development. The DNS approach is based on a discrete-time, direct-forcing immersed boundary method (IBM) that imposes no-slip and no-penetration boundary conditions on each particle’s surface. Results are reported for mean flow Reynolds number Re p ?=?50 and the ratio of the particle diameter d p to Kolmogorov scale is 5.5. The DNS confirm experimental observations that the clustered configurations enhance the level of fluid-phase turbulent kinetic energy (TKE) more than the uniform configurations, and this increase is found to arise from a lower dissipation rate in the clustered particle configuration. The simulations also reveal that the particle-fluid interaction results in significantly anisotropic fluid-phase turbulence, the source of which is traced to the anisotropic nature of the interphase TKE transfer and dissipation tensors. This study indicates that when particles are larger than the Kolmogorov scale (d p ?>?η), modeling the fluid-phase TKE alone may not be adequate to capture the underlying physics in multiphase turbulence because the Reynolds stress is anisotropic. It also shows that multiphase turbulence models should consider the effect of particle clustering in the dissipation model.  相似文献   

6.
Langevin stochastic differential equations provide a consistent basis for Reynolds stress, scalar transport and p.d.f. models. However, the stochastic equations must be capable of representing existing closures, like the General Linear Model, or the Rotta and Monin return to isotropy formulations. A consistent approach to derive both Reynolds stress and scalar flux transport equations, starting from a stochastic differential equation for velocity fluctuations, is presented here. A set of algebraic relations for the dispersion tensor is derived for homogeneous shear flow and for the log-layer.  相似文献   

7.
A low Reynolds number (LRN) formulation based on the Partially Averaged Navier-Stokes (PANS) modelling method is presented, which incorporates improved asymptotic representation in near-wall turbulence modelling. The effect of near-wall viscous damping can thus be better accounted for in simulations of wall-bounded turbulent flows. The proposed LRN PANS model uses an LRN k-ε model as the base model and introduces directly its model functions into the PANS formulation. As a result, the inappropriate wall-limiting behavior inherent in the original PANS model is corrected. An interesting feature of the PANS model is that the turbulent Prandtl numbers in the k and ε equations are modified compared to the base model. It is found that this modification has a significant effect on the modelled turbulence. The proposed LRN PANS model is scrutinized in computations of decaying grid turbulence, turbulent channel flow and periodic hill flow, of which the latter has been computed at two different Reynolds numbers of Re = 10,600 and 37,000. In comparison with available DNS, LES or experimental data, the LRN PANS model produces improved predictions over the standard PANS model, particularly in the near-wall region and for resolved turbulence statistics. Furthermore, the LRN PANS model gives similar or better results - at a reduced CPU time - as compared to the Dynamic Smagorinsky model.  相似文献   

8.
For complex turbulent flows, Reynolds stress closure modeling (RSCM) is the lowest level at which models can be developed with some fidelity to the governing Navier–Stokes equations. Citing computational burden, researchers have long sought to reduce the seven-equation RSCM to the so-called algebraic Reynolds stress model which involves solving only two evolution equations for turbulent kinetic energy and dissipation. In the past, reduction has been accomplished successfully in the weak-equilibrium limit of turbulence. In non-equilibrium turbulence, attempts at reduction have lacked mathematical rigor and have been based on ad hoc hypotheses resulting in less than adequate models.?In this work we undertake a formal (numerical) examination of the dynamical system of equations that constitute the Reynolds stress closure model to investigate the following questions. (i) When does the RSCM equation system formally permit reduced representation? (ii) What is the dimensionality (number of independent variables) of the permitted reduced system? (iii) How can one derive the reduced system (algebraic Reynolds stress model) from the full RSCM equations? Our analysis reveals that a lower-dimensional representation of the RSCM equations is possible not only in the equilibrium limit, but also in the slow-manifold stage of non-equilibrium turbulence. The degree of reduction depends on the type of mean-flow deformation and state of turbulence. We further develop two novel methods for deriving algebraic Reynolds stress models from RSCM equations in non-equilibrium turbulence. The present work is expected to play an important role in bringing much of the sophistication of the RSCM into the realm of two-equation algebraic Reynolds stress models. Another objective of this work is to place the other algebraic stress modeling efforts in the lower-dimensional modeling context. Received 19 November 1999 and accepted 3 August 2000  相似文献   

9.
Large-eddy simulations (LES) of particle-laden turbulent flows are presented in order to investigate the effects of particle response time on the dispersion patterns of a space developing flow with an obstruction, where solid particles are injected inside the wake of an obstacle [Vincont, J.Y., Simoens, S., Ayrault M., Wallace, J.M., 2000. Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J. Fluid Mech. 424, 127–167]. The numerical method is based on a fully explicit fractional step approach and finite-differences on Cartesian grids, using the immersed boundary method (IBM) to represent the existence of solid obstacles. Two different turbulence models have been tested, the classical Smagorinsky turbulence model and the filtered structure function model. The dispersed phase was modelled either by an Eulerian approach or a Lagrangian particle tracking scheme of solid particles with Stokes numbers in the range St = 0–25, assuming one-way coupling between the two phases. A very good agreement was observed between the Lagrangian and Eulerian approaches. The effect of particle size was found to significantly differentiate the dispersion pattern for the inhomogeneous flow over the obstacle. Although in homogeneous flows like particle-laden turbulent channels near-wall particle clustering increases monotonically with particle size, for the examined flow over an obstacle, preferential concentration effects were stronger only for an intermediate range of Stokes numbers.  相似文献   

10.
An advanced second-moment closure for the double-averaged turbulence equations of porous medium and vegetation flows is proposed. It treats three kinds of second moments which appear in the double-averaged momentum equation. They are the dispersive covariance, the volume averaged (total) Reynolds stress and the micro-scale Reynolds stress. The two-component-limit pressure–strain correlation model is applied to model the total Reynolds stress equation whilst a novel scale-similarity non-linear kε two-equation eddy viscosity model is employed for the micro-scale turbulence. For the dispersive covariance, an algebraic relation is applied. Model validation in several fully developed homogeneous porous medium flows, porous channel flows and aquatic vegetation canopy flows is performed with satisfactory agreement with the data.  相似文献   

11.
We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in particular, its significance and importance in the approach of the algebraic Reynolds stress modelling, such as in a nonlinear K-ε model. To this end and for illustration of the effect of extended intrinsic spin tensor on turbulence modelling, we examine several recently developed nonlinear K-ε models and compare their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with LES data. Our results and analysis indicate that, only if the deficiencies of these models and the like be well understood and properly corrected, may in the near future, more sophisticated nonlinear K-ε models be developed to better predict complex turbulent flows in a non-inertial frame of reference.  相似文献   

12.
Flow and heat transfer characteristics in transition and turbulent regions are studied experimentally and numerically in a horizontal smooth regular hexagonal duct under constant wall temperature boundary condition covering a range of Reynolds number from 2.3 × 103 to 52 × 103. Two types of k-omega (standard and shear stress transport (SST)) and three types of k-ε (standard, renormalization (RNG), and realizable) turbulence model are employed for transition and turbulent regions, respectively. Both average and fully developed Darcy friction factor and Nusselt number are presented as a function of Reynolds number. It is seen that k-omega SST and k-ε realizable turbulence models gave the best agreement with the experimental data in transition and turbulent regions, respectively. All the experimental results are correlated within an accuracy of ±13 % and ±7 % for Nusselt number and Darcy friction factor, respectively. Results obtained in this study are compared with circular duct results using hydraulic diameter.  相似文献   

13.
The results of the numerical modeling of flow structure, turbulence, and heat transfer in a gas-droplet stream after sudden tube expansion on the basis of the Eulerian approach are presented. The gas phase turbulence was modeled using the Reynolds stress transfer model modified to allow for the presence of particles. The results are compared with those obtained using the two-equation k-ε model. The latter results overestimate the heat transfer in the separation flow as compared with the Reynolds stress transfer model. The heat transfer is shown to considerably increase, when evaporating droplets are incorporated in the separation flow (by a factor of more than 1.5 compared with the case of a single-phase flow at a small mass concentration of the droplets M L1 ≤ 0.05). The addition of the disperse phase in the turbulent gas flow leads a slight increase in the recirculation zone length. Good agreement with the experimental data indicates the adequacy of the numerical model developed.  相似文献   

14.
15.
We study the dynamics of gas–liquid flows experimentally and computationally in a rectangular bubble column where the gas source is introduced at the corner. The flow in this reactor is complex and inherently unsteady in nature. The two-dimensional liquid phase velocity field is calculated by an Eulerian approach solving the unsteady Reynolds Averaged Navier Stokes equations. The conservation equations are closed using a two parameter turbulence model. The two-way coupling was accounted for by adding source terms in the conservation equations of the continuous phase to take into account the interaction with the dispersed phase. Bubble tracking is achieved through a Lagrangian approach. Here the equations of motion are solved taking into account the drag, pressure, buoyancy and gravity forces. The time-averaged flows along with the variables which characterize turbulence are analyzed for a wide range of gas flow-rates using Euler–Lagrangian simulations. These simulation predictions are validated with Euler–Eulerian simulations where the gas-phase distribution is captured as a void fraction and PIV experiments. The motion of bubbles induces turbulence in the flow. The applicability of two parameter models for turbulence like the standard kε model on time-averaged flow properties is addressed. From the results of the time averaged velocity field, turbulence intensity, turbulent viscosity and gas hold-up profiles, it is concluded that the Euler–Lagrangian model is applicable at lower gas flow-rates. The Euler–Eulerian approach was found to be valid at lower as well as higher gas flow-rates.  相似文献   

16.
The present paper introduces a new numerical method for predicting the characteristics of thermocapillary turbulent convection in a differentially-heated rectangular cavity with two superposed and immiscible fluid layers. The unsteady Reynolds form of the Navier–Stokes equations and energy equation are solved by using the control volume approach on a staggered grid system using SIMPLE algorithm. The turbulence quantities are predicted by applying the standard kε turbulence model. The level set formulation is applied for predicting the topological changes of the interface separating the two fluid layers and to provide an accurate and robust modeling of the interfacial normal and tangential stresses. The computational results obtained showed good agreement when compared with the previous experimental, numerical and analytical benchmark data for different validation cases in both laminar and turbulent regimes. The present numerical method is then applied to predict the velocity and temperature distribution in two immiscible liquid layers with undeformable interface for a wide range of Marangoni numbers. The laminar-turbulent transition is demonstrated by obtaining the turbulence features at high interfacial temperature gradient which is characterized by high Marangoni number. The effect of increasing Marangoni number on the interface dynamics in turbulent regime is also investigated.  相似文献   

17.
A nonlinear turbulent stress relationship, based on an explicit algebraic Reynolds stress closure, is compared against experimental data obtained in a swirl-supported, light-duty engine motored at constant speed. The model relationship is applied to measured mean velocity gradients and turbulence scales, and the predictions compared against the measured shear stress and normal stress anisotropy. Significant improvement over the linear stress relationship typically used in two-equation turbulence models is observed. Conditions under which the model predictions are poor are identified and the reasons for the poor performance discussed.  相似文献   

18.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The standard k–ε eddy viscosity model of turbulence in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent axisymmetric jet impinging within a semi-confined space. A single geometry with a Reynolds number of 20,000 and a nozzle-to-plate spacing of two diameters has been considered with inlet boundary conditions based on measured profiles of velocity and turbulence. Velocity, turbulence and heat transfer data have been obtained using laser–Doppler anemometry and liquid crystal thermography respectively. In the developing wall jet, numerical results of heat transfer compare to within 20% of experiment where isotropy prevails and the trends in turbulent kinetic energy are predicted. However, stagnation point heat transfer is overpredicted by about 300%, which is attributed directly to the turbulence model and inapplicability of the wall function.  相似文献   

20.
Some types of mixed subgrid-scale (SGS) models combining an isotropic eddy-viscosity model and a scale-similarity model can be used to effectively improve the accuracy of large eddy simulation (LES) in predicting wall turbulence. Abe (2013) has recently proposed a stabilized mixed model that maintains its computational stability through a unique procedure that prevents the energy transfer between the grid-scale (GS) and SGS components induced by the scale-similarity term. At the same time, since this model can successfully predict the anisotropy of the SGS stress, the predictive performance, particularly at coarse grid resolutions, is remarkably improved in comparison with other mixed models. However, since the stabilized anisotropy-resolving SGS model includes a transport equation of the SGS turbulence energy, kSGS, containing a production term proportional to the square root of kSGS, its applicability to flows with both laminar and turbulent regions is not so high. This is because such a production term causes kSGS to self-reproduce. Consequently, the laminar–turbulent transition region predicted by this model depends on the inflow or initial condition of kSGS. To resolve these issues, in the present study, the mixed-timescale (MTS) SGS model proposed by Inagaki et al. (2005) is introduced into the stabilized mixed model as the isotropic eddy-viscosity part and the production term in the kSGS transport equation. In the MTS model, the SGS turbulence energy, kes, estimated by filtering the instantaneous flow field is used. Since the kes approaches zero by itself in the laminar flow region, the self-reproduction property brought about by using the conventional kSGS transport equation model is eliminated in this modified model. Therefore, this modification is expected to enhance the applicability of the model to flows with both laminar and turbulent regions. The model performance is tested in plane channel flows with different Reynolds numbers and in a backward-facing step flow. The results demonstrate that the proposed model successfully predicts a parabolic velocity profile under laminar flow conditions and reduces the dependence on the grid resolution to the same degree as the unmodified model by Abe (2013) for turbulent flow conditions. Moreover, it is shown that the present model is effective at transitional Reynolds numbers. Furthermore, the present model successfully provides accurate results for the backward-facing step flow with various grid resolutions. Thus, the proposed model is considered to be a refined anisotropy-resolving SGS model applicable to laminar, transitional, and turbulent flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号