首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
ABSTRACT

A method is presented providing an upper bound to the maximum shakedown deflections for elastic-perfectly plastic structures. The influence of plastic zones is taken into account. Residual stresses required by the Melan theorem can be expressed in terms of stresses due to ideal plastic hinges and of stresses due to the finite extent of plastic zones. Making use of this fact a bound on the total energy dissipated in a shakedown process as well as a bound to the permanent displacement have been derived. This bound permits an estimate of the deflections at shakedown. Application of the method is illustrated by means of two examples.  相似文献   

3.
4.
A modified shakedown theorem and its solving technique are presented to involve hydrogen embrittlement of steel into limit and shakedown analysis. Firstly, the shakedown theorem for hydrogen embrittled material is derived from a limited kinematic hardening shakedown theorem and hydrogen enhanced localized plasticity mechanism of hydrogen embrittlement. In the presented theorem, hydrogen’s effect is taken into account by the synergistic action of both strength reduction and stress redistribution. Secondly, a novel solving technique is developed based on the basis reduction method, in which the complicated constraints in the resulting nonlinear mathematical programming are released. At last, three numerical examples are carried out to verify the performance of the proposed method and to reveal hydrogen’s effect on the limit and shakedown load of structure. The numerical results are discussed and compared with those from literatures, which proves the accuracy and high efficiency of the introduced solving technique. It is concluded that the proposed theorem can predict the limit and shakedown load of hydrogen embrittled structure reasonably.  相似文献   

5.
In the plane-strain conditions of a long cylinder in rolling line contact with an elastic-perfectly-plastic half-space an exact shakedown limit has been established previously by use of both the statical (lower bound) and kinematical (upper bound) shakedown theorems. At loads above this limit incremental strain growth or “ratchetting” takes place by a mechanism in which surface layers are plastically sheared relative to the subsurface material.In this paper the kinematical shakedown theorem is used to investigate this mode of deformation for rolling and sliding point contacts, in which a Hertz pressure and frictional traction act on an elliptical area which repeatedly traverses the surface of a half-space. Although a similar mechanism of incremental collapse is possible, the behaviour is found to be different from that in two-dimensional line contact in three significant ways: (i) To develop a mechanism for incremental growth the plastic shear zone must spread to the surface at the sides of the contact so that a complete segment of material immediately beneath the loaded area is free to displace relative to the remainder of the half-space, (ii) Residual shear stresses orthogonal to the surface are developed in the subsurface layers, (iii) A range of loads is found in which a closed cycle of alternating plasticity takes place without incremental growth, a condition often referred to as “plastic shakedown”.Optimal upper bounds to both the elastic and plastic shakedown limits have been found for varying coefficients of traction and shapes of the loaded ellipse. The analysis also gives estimates of the residual orthogonal shear stresses which are induced.  相似文献   

6.
Summary  Criteria for a priori recognition of the type of steady-state response induced by cyclic loads and prediction whether a structure will shakedown elastically or not, without the necessity of performing a step-by-step full analysis, have considerable importance. Melan and Koiter theorems provide criteria that guarantee whether elastic shakedown occurs or not under cyclic loads in case of perfect plasticity. However, there remain some aspects of the shakedown theory which deserve further study. One of these, concerned with more realistic nonassociative elastic–plastic constitutive material models, allowing for nonlinear kinematic and isotropic hardening suitable to describe the cyclic plastic behaviour of metallic materials, has strong motivation. Koiter's elastic nonshakedown theorem is reconsidered here, with the objective of extending it to the de Saxcé's implicit standard material class, which contains a wide class of nonassociative elastic–plastic material behaviours. Shakedown analysis is formulated by a kinematic approach based on the plastic accumulation mechanism concept due to Polizzotto. A sufficient condition for elastic nonshakedown and a distinct necessary condition are established. Then, an upper bound to the shakedown multiplier is evaluated. Received 15 February 2001; accepted for publication 18 October 2001  相似文献   

7.
将基于Voronoi结构的无网格局部Petrov-Galerkin法与减缩基技术相结合,建立了一种安定下限分析的新方法.为了克服移动最小二乘近似难以准确施加本质边界条件的缺点,采用了自然邻近插值构造试函数.通过引入基准载荷域上载荷角点的概念,消除了安定下限分析中由时间参数所引起的求解困难.利用减缩基技术,将安定分析问题化为一系列未知变量较少的非线性规划子问题.在每个非线性规划子问题中,自平衡应力场由一组带有待定系数的自平衡应力场基矢量的线性组合进行模拟,而这些自平衡应力场基矢量可应用弹塑性增鼍分析中的平衡迭代结果得到.算例结果汪明了提出的分析方法的有效性.  相似文献   

8.
We present a numerical method for the computation of shakedown loads of engineering structures with limited kinematical hardening under thermo-mechanical loading. The method is based on Melan’s statical shakedown theorem, which results in a nonlinear convex optimization problem. This is solved by an interior-point algorithm recently developed by the authors, specially designed for lower bound shakedown analysis of large-scale problems. Limited kinematical hardening is taken into account by use of a two-surface model, such that both alternating plasticity and incremental collapse can be captured. For the yield surface as well as for the bounding surface the von Mises criterion is used. The proposed method is validated by two examples, where numerical results are compared to those of literature where available.  相似文献   

9.
将基于Voronoi结构的无网格局部Petrov-Galerkin法与减缩基技术相结合,建立了一种安定下限分析的新方法.为了克服移动最小二乘近似难以准确施加本质边界条件的缺点,采用了自然邻近插值构造试函数.通过引入基准载荷域上载荷角点的概念,消除了安定下限分析中由时间参数所引起的求解困难.利用减缩基技术,将安定分析问题化为一系列未知变量较少的非线性规划子问题.在每个非线性规划子问题中,自平衡应力场由一组带有待定系数的自平衡应力场基矢量的线性组合进行模拟,而这些自平衡应力场基矢量可应用弹塑性增量分析中的平衡迭代结果得到.算例结果证明了提出的分析方法的有效性.   相似文献   

10.
The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.  相似文献   

11.
Ponter  Alan R. S. 《Meccanica》2001,36(1):37-47
In recent years a particular programming method, the linear matching method, has been particularly successful in the evaluation of optimal upper bounds to shakedown limits for an elastic perfectly plastic body. The method applies to any convex yield condition with an associated flow rule and sufficient conditions for convergence exist. For creep constitutive equations and for a body under cyclic loading, there exist a class of cyclic solutions, the so called 'rapid cycle' solutions for which the residual stress field remains constant throughout the cycle. In this paper an upper bound theorem for the rapid cycle solution is derived and related to the upper bound shakedown theorem. This allows the linear matching method to be extended to this class of creep problems. A sufficient condition for convergence is derived. For a flow potential expressed in terms of a Von Mises effective stress, the sufficient condition is shown to be a simple and common property of creep equations. Sommario. Recentemente, un particolare metodo di programmazione, detto del materiale elastico equivalente, si è rivelato particolarmente efficiente nella valutazione della delimitazione superiore ottimale del limite di adattamento di solidi idealmente elasto-plastici. Il metodo vale con riferimento a qualunque condizione di plasticità convessa con legge di scorrimento associata e sono disponibili condizioni sufficienti di convergenza. Nel caso di legami costitutivi viscosi, per solidi soggetti a carichi ciclici esiste una classe di soluzioni, dette di 'ciclo rapido', in cui gli sforzi residui si mantengono costanti nel ciclo. In questo lavoro si deriva un teorema di delimitazione superiore per le soluzioni di ciclo rapido, che viene relazionato al corrispondente teorema di adattamento. Ciò permette di estendere il metodo del materiale elastico equivalente a questa categoria di problemi viscosi. Una condizione sufficiente per la convergenza del metodo viene anche dimostrata. Nel caso di un potenziale espresso in termini dello sforzo equivalente di von Mises, tale condizione si rivela essere una semplice e comune proprietà del legame costitutivo.  相似文献   

12.
The classical shakedown theory is extended to a class of perfectly plastic materials with strengthening effects (Hall–Petch effects). To this aim, a strain gradient plasticity model previously advanced by Polizzotto (2010) is used, whereby a featuring strengthening law provides the strengthening stress, i.e. the increase of the yield strength produced by plastic deformation, as a degree-zero homogeneous second-order differential form in the accumulated plastic strain with associated higher order boundary conditions. The extended static (Melan) and kinematic (Koiter) shakedown theorems are proved together with the related lower bound and upper bound theorems. The shakedown limit load problem is addressed and discussed in the present context, and its solution uniqueness shown out. A simple micro-scale structural system is considered as an illustrative example. The shakedown limit load is shown to increase with decreasing the structural size, which is a manifestation of the classical Hall–Petch effects in a context of cyclic loading.  相似文献   

13.
An extension of the upper bound shakedown theorem to load histories in excess of shakedown has been presented elsewhere in this issue. Here the minimisation process described therein is applied to the solutions of the ratchet limit as well as shakedown and limit load for a range of simple problems. The solutions provide an estimate of the maxima of the varying plastic strain magnitudes, which is compared with the Neuber approximate values. The position of the ratchet boundary is confirmed by comparison step-by-step analysis.  相似文献   

14.
In this paper, the static shakedown theorem is reformulated making use of the symmetric Galerkin boundary element method (SGBEM) rather than of finite element method. Based on the classical Melan’s theorem, a numerical solution procedure is presented for shakedown analysis of structures made of elastic-perfectly plastic material. The self-equilibrium stress field is constructed by linear combination of several basis self-equilibrium stress fields with parameters to be determined. These basis self-equilibrium stress fields are expressed as elastic responses of the body to imposed permanent strains obtained through elastic–plastic incremental analysis. The lower bound of shakedown load is obtained via a non-linear mathematical programming problem solved by the Complex method. Numerical examples show that it is feasible and efficient to solve the problems of shakedown analysis by using the SGBEM.  相似文献   

15.
This paper develops a novel nonlinear numerical method to perform shakedown analysis of structures subjected to variable loads by means of nonlinear programming techniques and the displacement-based finite element method. The analysis is based on a general yield function which can take the form of most soil yield criteria (e.g. the Mohr–Coulomb or Drucker–Prager criterion). Using an associated flow rule, a general yield criterion can be directly introduced into the kinematic theorem of shakedown analysis without linearization. The plastic dissipation power can then be expressed in terms of the kinematically admissible velocity and a nonlinear formulation is obtained. By means of nonlinear mathematical programming techniques and the finite element method, a numerical model for kinematic shakedown analysis is developed as a nonlinear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load can be calculated. An effective, direct iterative algorithm is then proposed to solve the resulting nonlinear programming problem. The calculation is based on the kinematically admissible velocity with one-step calculation of the elastic stress field. Only a small number of equality constraints are introduced and the computational effort is very modest. The effectiveness and efficiency of the proposed numerical method have been validated by several numerical examples.  相似文献   

16.
极限分析和安全分析的近代发展方向是寻找通用性强,计算效率高的数值方法。本文介绍将有限单元法和数学规划法相结合的、同时适用于极限分析和安全分析的统一数值方法,包括下限格式和上限格式。  相似文献   

17.
In this article, the ductile damage of materials is introduced into the shakedown theory of strain-hardening structures. A mathematical programming method is developed to calculate an upper bound of the damage factor in a structure subjected to varying loads, which is suggested as the criterion of structural failure. Based on it, a lower bound of the safe load factor can be obtained for a strain-hardening structure via a mathematical programming. The application of this theory is demonstrated by analysing the thick-walled cylindrical tube.  相似文献   

18.
Chinh  Pham Duc 《Meccanica》1999,34(1):49-56
A reduced but equivalent form of Koiter's upper bound kinematic theorem, which does not involve time integrals, is deduced, provided that the plastic strain rates at every point of a structure are confined to a certain number of possible directions in the strain space. Generally it yields an upper bound on the shakedown factor, which improves upon the previous one by Pham and Stumpf.Sommario. Una forma ridotta ma equivalente del teorema cinematica di Koiter sul limite superiore, che non coinvolge integrali temporali, viene dedotta sotto la condizione che le velocità di deformazione plastica in ogni punto della struttura siano confinate ad un certo numero di possibili direzioni nello spazio delle deformazioni. Generalmente, ciò produce un limite superiore sul fattore di shakedown, che migliora quello precedente di Pham e Stumpf.  相似文献   

19.
Based on a rigid-plastic material model that obeys the von Mises yield criterion, the plastic behavior of foams with an open-celled structure is studied in this paper using a single unit cell. An approximate continuum plasticity model is developed within the framework of the upper bound theorem of plasticity to describe the yield behavior of foams. The microscopic velocity fields are derived for the unit cell, which satisfy the incompressibility and the kinematic boundary conditions, and expressed in macroscopic rate of deformation. From the microscopic velocity fields, a macroscopic yield function is developed for foams under multi-axial stresses and includes the effects of the hydrostatic stress due to the void presence and growth. The dependency of the derived yield surfaces of foams on their relative densities is studied. The plastic behavior of foams is also studied numerically using the finite element method. The newly developed plasticity model is compared with the finite element analysis results and other available foam models and then correlated with the finite element results.  相似文献   

20.
This paper proposes a numerical solution method for upper bound shakedown analysis of perfectly elasto-plastic thin plates by employing the C1 natural element m...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号