首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new barium borate bromide crystals, Ba2BO3Br and Ba3BO3Br3, have been obtained by spontaneous crystallization. Ba2BO3Br crystallizes in P−3m1 space group, with cell parameters of a = 5.5157(10) Å, c = 11.019(4) Å, and Z = 2, its structure is build up by alternately stacking along c-axis of [Ba2(BO3)2]2− layers and bromide [Ba2Br2]2+ layers. The solved structure is analog to Ba2(BO3)1−x(CO3)xCl1+x except the interstitial halogen atoms at (0, 0, 1/2) is missing and accordingly the partly CO3 substitution for BO3 has not been observed. Ba3BO3Br3 crystallizes in a new structure type with P−1 space group and cell parameters of a = 9.280(4) Å, b = 9.349(7) Å, c = 13.025(9) Å, α = 92.71(3)°, β = 98.29(3)°, γ = 116.200(18)° and Z = 4. The basic structural unit in Ba3BO3Br3 is the clusters composed of 4 BO3 groups and 12 Ba atoms, which in turn are linked by eight Ba–O bonds with other four clusters to form sheets extend in the (001) plane.  相似文献   

2.
Crystal of a new neodymium oxyborate fluoride Nd6Li(BO3)3O4F2 was grown by the flux method. Its structure, determined by single crystal x-ray diffraction, belongs to the space group C2/c with cell parameters of a = 12.0629(2) Å, b = 6.94650(10) Å, c = 16.0528(3) Å, β = 104.5360(10)°. In the structure, Nd atoms coordinate to oxygen or fluorine atoms to yeild 7 or 8 coordinated Nd(O,F)n polyhedra. Those polyhedra are edge-shared to form a double layer of (Nd12O23F4)14? fluorite blocks. The blocks are linked by oxygen atoms of planar BO3 groups in the c direction into a 3-dimensional network. Another novel element in the structure is that Li coordinates to 6 oxygen atoms from three BO3 groups forming a propeller like arrangement, and theoretical calculation shows that such arrangement should give 3/4 that of BO3 contribution to second harmonic effect. The crystal shows deep violet color with typical Nd3+ optical absorption and a UV transmission cut-off of 260 nm.  相似文献   

3.
Synthesized powders and grown single crystals of nominal compositions Li6Ln(BO3)3:Yb3+ (Ln=Y, Gd) were investigated by means of powder and single‐crystal X‐ray diffraction (XRD), as well as optical near‐IR spectroscopy in conjunction with electron paramagnetic resonance (EPR) spectroscopy. The appearance of two distinct zero‐phonon lines suggests the existence of two kinds of Yb3+ ions in the single crystals. The XRD results exclude the possibility of a phase transition occurring between room and low temperatures. EPR spectra of single crystals show the presence of both isolated ions and pairs of ytterbium ions substituted for Y3+. A strong temperature dependence of the intensity of Yb–Yb pairs resonance lines coincides with temperature dependence of emission peak at 978 nm, confirming a common origin of the defect giving rise to these spectra. Calculated from EPR spectra, the distance between pairs of Yb3+ is in good agreement with crystallographic ones: R=3.856 Å, Rcryst=3.849 Å.  相似文献   

4.
Crystals of mixed alkali neodymium orthoborates, K9Li3Nd3(BO3)7 and A2LiNd(BO3)2 (A = Rb, Cs) were obtained by spontaneous crystallization. K9Li3Nd3(BO3)7 crystallizes in space group P2/c with cell parameters of a = 11.4524(7) Å, b = 10.1266(6) Å, c = 12.3116 (10) Å, β = 122.0090(10)°. In the structure, NdO8 polyhedra share corners and connect with planer BO3 groups to form infinite [Nd3B3O21]n chains. These chains are linked by additional BO3 groups to produce a double layer of [Nd6B6O38]n blocks in the ac plane with K and Li ions filled into the cavities. A2LiNd(BO3)2 (A = Rb, Cs) crystallizes in space group Pbcm, with cell parameters of a = 7.113(2) Å, b = 9.691(3) Å and c = 10.135(3) Å for Rb2LiNd(BO3)2, and a = 7.2113(3) Å, b = 9.9621(4) Å, and c = 10.3347(4) Å for Cs2LiNd(BO3)2. In the structure, NdO8 polyhedra are corner‐sharing with each other and further interlinked by BO3 groups to comprise the infinite [Nd4B4O24] sheets in the bc plane, with Rb/Cs and Li ions occupying the interlayered space. The compounds show effective near‐IR emission and their associated lifetimes are obtained by fluorescence spectra.  相似文献   

5.
New Thiophosphates: The Compounds Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) and Ag3Y(PS4)2 The new thiophosphates Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) were synthesized by heating mixtures of Ln, P, S, and Li2S4 at 900 °C (100 h) and they were investigated by single crystal X‐ray methods. The compounds with Ln = Y (a = 28.390(2), b = 10.068(1), c = 33.715(2) Å, β = 113.85(1)°), Gd (a = 28.327(2), b = 10.074(1), c = 33.822(2) Å, β = 114.297(7)°), Dy (a = 28.124(6), b = 10.003(2), c = 33.486(7) Å, β = 113.89(3)°), Yb (a = 28.178(3), b = 9.977(1), c = 33.392(4) Å, β = 113.65(1)°), and Lu (a = 28.169(6), b = 10.002(2), c = 33.432(7) Å, β = 113.54(3)°) are isotypic and crystallize in a new structure type (C2/c; Z = 12). Main feature are PS4 tetrahedra isolated from each other surrounding the Ln and Li atoms via their S atoms. The coordination number of the five crystallographically independent Ln atoms is eight, but the polyhedra are quite different and they are interlinked to larger units extending in [010]. The environment of the Li atoms is irregular and formed by five to six S atoms. The crystal structure is compared with that of Li9Ln2(PS4)5 (Ln: Nd, Gd). For the synthesis of Ag3Y(PS4)2 (a = 16.874(3), b = 9.190(2), c = 9.312(2) Å, β = 123.17(3)°) a mixture of Y, P, S, and Ag2S was heated to 700 °C (50 h). The thiophosphate crystallizes in a new structure type (C2/c; Z = 4) composed of isolated PS4 tetrahedra. The two crystallographically independent Ag atoms are surrounded by four S atoms in the shape of distorted tetrahedra. The Ag(1)S4 polyhedra are cornershared to strands running along [001], which are linked together via Ag(2)S4 tetrahedra. The environment of the Y atoms is composed of eight S atoms each building distorted square antiprisms. These polyhedra are connected with each other via common edges to a strand running along [001].  相似文献   

6.
《Solid State Sciences》2007,9(8):713-717
The new nonlinear optical crystals BiAlGa2(BO3)4 have been grown by spontaneous crystallization with molten flux based on a Bi2O3–B2O3 solvent. From single crystal X-ray diffraction measurement, BiAlGa2(BO3)4 has been found to crystallize in the trigonal huntite structure type, space group R32, with cell dimensions a = 9.4433(9) and c = 7.4130(10) Å. The diffuse reflectance spectrum on a powder sample indicated that the short-wavelength absorption edge of BiAlGa2(BO3)4 extends to approximately 271 nm. Second-harmonic generation (SHG) on powder samples has been measured using Kurtz and Perry technique, which indicated that BiAlGa2(BO3)4 is a phase-matchable material, and its SHG coefficient is measured to be four times as large as that of KDP.  相似文献   

7.
The two complexes, [Ln(Ala)2(Im)(H2O)](ClO4)3 (Ln=Pr, Gd), were synthesized and characterized. Using a solution-reaction isoperibol calorimeter, standard enthalpies of reaction of two reactions: LnCl3⋅6H2O(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Ln(Ala)2(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l) (Ln=Pr, Gd), at T=298.15 K, were determined to be (39.26±0.10) and (5.33±0.12) kJ mol–1 , respectively. Standard enthalpies of formation of the two complexes at T=298.15 K, ΔfHΘm {[Ln(Ala)2(Im)(H2O)](ClO4)3(s)} (Ln=Pr, Gd), were calculated as –(2424.2±3.3) and –(2443.4±3.3) kJ mol–1 , respectively.  相似文献   

8.
A novel beryllium borate CsBe4(BO3)3 has been grown in crystals by high-temperature flux method using spontaneous nucleation technique for the first time. The crystal structure of this compound was determined by single crystal X-ray diffraction analysis. It crystallizes in the orthorhombic space group Pnma with lattice parameters a = 8.3914(5) Å, b = 13.3674(7) Å, c = 6.4391(3) Å, Z = 4, V = 722.28(7) Å3. The crystal takes the same structure type as Rb analog based on the units of BO3 triangles and BeO4 tetrahedrons, displaying a three-dimensional tunnel structure with Cs atoms filling in the cages. The IR spectrum confirms the presence of BO3 groups and the UV–vis–IR diffuse reflectance spectrum exhibits this compound has a short UV cut-off edge below 200 nm. Band structures and density of states were calculated.  相似文献   

9.
Q.D. Zeng  R.K. Li 《Solid State Sciences》2010,12(12):2144-2147
A series of potassium rare earth oxyborates, K2RE2(BO3)2O (RE = La, Nd, Sm and Eu), have been synthesized. Single crystal of the first member of the series, K2La2(BO3)2O, has been grown by the flux method. Its structure, determined by single crystal X-ray diffraction, shows that it belongs to the monoclinic system, space group P21/c with unit cell parameters of a = 11.422(2) Å, b = 6.6803(13) Å, c = 10.813(2) Å, β = 17.23(3)° and Z = 4. Optical transmission spectrum shows that the K2La2(BO3)2O crystal is highly transparent from 215 nm to 2750 nm.  相似文献   

10.
Two new rare earth containing orthoborate crystals ASr4La3(BO3)6 (A = Li, Na) have been obtained by spontaneous nucleation from high-temperature melts of A2O–SrO–La2O3–B2O3–AF. X-ray diffraction analyses show that they both crystallize in the rhombohedral space group R-3 with cell parameters of a = 12.309(7) Å, c = 9.316(7) Å and a = 12.4049(13) Å, c = 9.348(2) Å for the Li and Na compounds respectively. Similar to the large A′6MM′(BO3)6 family, these compounds are all related to the structure of Sr3Y(BO3)3 with La and Sr statistically occupy the Sr site, and the alkaline elements and remaining Sr enter the ordered Y1 and Y2 sites, which can be approximately represented as (La2.91Sr3.09)(La0.09Sr0.91)Li[B6O18] and (La2.85Sr3.15)(La0.15Sr0.85)Na[B6O18]. The characteristic of the structure is that the La/Sr and isolated BO3 groups form a network with tunnels along the c-axis where the alkaline A and Sr ions alternatively reside. The optical transmission spectrum shows that the ultraviolet absorption edge of NaSr4La3(BO3)6 crystal is about 193 nm and Raman spectra reveal that both crystals possess sharp peaks at 930 cm−1.  相似文献   

11.
Yb5(BO3)2F9 was synthesized under high-pressure/high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C, representing the first known ytterbium fluoride borate. The compound exhibits isolated BO3-groups next to ytterbium cations and fluoride anions, showing a structure closely related to the other known rare-earth fluoride borates RE3(BO3)2F3 (RE=Sm, Eu, Gd) and Gd2(BO3)F3. Monoclinic Yb5(BO3)2F9 crystallizes in space group C2/c with the lattice parameters a=2028.2(4) pm, b=602.5(2) pm, c=820.4(2) pm, and β=100.63(3)° (Z=4). Three different ytterbium cations can be identified in the crystal structure, each coordinated by nine fluoride and oxygen anions. None of the five crystallographically independent fluoride ions is coordinated by boron atoms, solely by trigonally-planar arranged ytterbium cations. In close proximity to the above mentioned compounds RE3(BO3)2F3 (RE=Sm, Eu, Gd) and Gd2(BO3)F3, Yb5(BO3)2F9 can be described via alternating layers with the formal compositions “YbBO3” and “YbF3” in the bc-plane.  相似文献   

12.
The crystal structures of Nd(OH)2NO3 and Gd(OH)2NO3 have been determined from single-crystal X-ray diffraction techniques. Crystallization occurs in monoclinic space group P21 (No. 4) with a = 6.420(1), b = 3.838(1), c = 7.746(2) Å, and β = 98.18(2)° for Nd(OH)2NO3 and a = 6.340(2), b = 3.715(1), c = 7.728(2) Å, and β = 96.95(2)° for Gd(OH)2NO3. The structures were refined to residual indices of 0.025 and 0.048, respectively, using 372 and 360 unique reflections. The lanthanoid metal atoms are nine-coordinated, having a tricapped trigonal prismatic geometry. The nitrate counter ion acts as a bidentate ligand, while the two hydroxide oxygen atoms link symmetry-related lanthanoid atoms, forming two-dimensional layers.  相似文献   

13.
《Solid State Sciences》2001,3(4):513-518
Single crystals of Cs3Ln7Te12 (Ln = Sm, Gd, Tb) have been grown accidentally through the reaction of Ln and Te with a CsCl or Cs2Te3 flux at elevated temperatures. The crystal structures have been determined from single crystal X-ray diffraction data. These compounds, which are isostructural with Rb3Yb7Se12, crystallize in space group Pnnm of the orthorhombic system with two molecules in the following cells: Cs3Sm7Te12, a=13.750(6), b=28.332(7), c=4.473(3) Å, T=293 K; Cs3Gd7Te12, a=13.6064(13), b=28.209(3), c=4.4324(4) Å, T=153 K; Cs3Tb7Te12, a=13.5708(16), b=28.116(3), c=4.4147(5) Å, T=153 K.  相似文献   

14.
Er5(BO3)2F9 was synthesised under conditions of 3 GPa and 800 °C in a Walker‐type multianvil apparatus. The crystal structure was determined on the basis of single‐crystal X‐ray diffraction data, collected at room temperature. Er5(BO3)2F9 is isotypic to the recently synthesised Yb5(BO3)2F9 and crystallises in C2/c with the lattice parameters a = 2031.2(4) pm, b = 609.5(2) pm, c = 824.6(2) pm, and β = 100.29(3)°. The physical properties of RE5(BO3)2F9 (RE = Er, Yb) including high temperature behaviour and single crystal IR‐ / Raman spectroscopy were investigated.  相似文献   

15.
《Solid State Sciences》2001,3(1-2):223-234
The first bromothioantimonates of cerium and lanthanum, Ce2SbS5Br (I), CeLaSbS5Br (II) and La2SbS5Br (III), have been synthesized and characterized. I and III crystallize in the Pnma (n°62) space group while the structure of II was refined in the P212121 (n°19) space group probably due to an ordering between Ce and La. The cell parameters are: a=8.847(2) Å, b=5.492(1) Å, c=17.697(6) Å, V=859.9(6) Å3 for I; a=8.9023(9) Å, b=5.5113(6) Å, c=17.809(2) Å, V=873.8(3) Å3 for II and a=8.905(2) Å, b=5.526(1) Å, c=17.883(3) Å, V=880.0(5) Å3 for III. These three materials exhibit the same novel structural arrangement with lanthanides surrounded by sulfur and bromine anions in two different LnS7Br3 and LnS8Br units. Some sulfur atoms are engaged in SS bonding dimers while antimony exhibits a SbS4E coordination (E=lone pair), the characteristics of which hint at a stereo-active 5s2 electron pair. The charge balance in the materials is written as LnIII2SbIII(S2)–IIS–II3Br. The same red color of the three materials rules out the occurrence of the Ce-4f1→Ce-5d1 electronic transition usually observed in Ce containing sulfides. In contrast, band structure calculations (TB-LMTO-ASA) assigned the observed absorption threshold around 2.08 eV for the three phases to the existence of a VB→CB electronic transition, i.e. an unpaired S or Br→Sb or paired S charge transfer.  相似文献   

16.
Li2O-Ln2O3-B2O3 (Ln = Nd, Eu, Dy, Yb, and Y) ternary systems were studied along their inner sections. Two types of ternary compounds were found: Li3Ln2(BO3)3 (Ln = Nd, Eu, Dy, and Yb) and Li6Ln(BO3)3 (Ln = Dy and Yb). The systems were triangulated. Melts were chosen for growing single crystals of ternary compounds in multinary systems. Original Russian Text ? Sh.A. Gamidova, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 1, pp. 142–145.  相似文献   

17.
RbLi2Ga2(BO3)3     
The structure of rubidium dilithium digallium tris­(borate), RbLi2Ga2(BO3)3, contains two‐dimensional sheets of open‐branched rings of GaO4 tetrahedra and planar BO3 triangles that are joined by LiO4 tetrahedra to form a three‐dimensional framework. Ten‐coordinate Rb atoms lie on twofold axes and occupy channels within the framework that extend along the b axis.  相似文献   

18.
Solid‐state calculations were performed with the program CASTEP to analyze some electronic structure features of the crystal compound Li6Gd(BO3)3 (LIGDBO), which is known to be an efficient gamma radiation detector, in particular when doped with rare‐earth ions. The structure of this material displays a clear 1‐D preference, where chains of atoms are formed along one of the crystalline axes. These quasilinear chains are responsible for the energy transfer occurring in the system prior to the actual detection. To elucidate on some aspects of the former process, calculations based on a few cluster models were also carried out by means of the molecular program JAGUAR. One of our results corresponds to a theoretical absorption energy value close to that experimentally obtained. In our calculation, the absorption process seems to be associated with the formation of an excitonic magnon state. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

19.
Polycrystalline boratotungstates of composition Ln3BWO9 (Ln = Pr, Nd, Sm, Gd, Tb, Dy) are prepared by solid-phase synthesis and structurally studied. The structures are refined using the Rietveld method for hexagonal space group P63 (Z = 2). The boratotungstate structures are frameworks. The rare-earth cations in the structure are coordinated by an array of nine oxygen atoms (three oxygen atoms from borato groups BO3 and six from WO6 polyhedra). The nature of the optical nonlinearity in the hexagonal boratotungstates Ln3BWO9 is a direct consequence of the acentricity of both the tungstate and the rare-earth polyhedra in the structure. Dimorphism is discovered in polycrystalline La3BWO9.  相似文献   

20.
Ln3UO6Cl3 (Ln=La, Pr, Nd) — The First Oxochlorouranates of the Rare Earths . The new compounds Ln3UO6Cl3 (Ln=La, Pr, Nd) were prepared by heating stoichiometric amounts of LnOCl/Ln2O3/U3O8 (7 : 1 : 1) (Ln=La, Nd) and PrOCl/Pr6O11/U3O8 (12 : 1 : 2) in silica ampoules (5 d, 1000°C, Ln=La; 9 d 800°C, Ln=Pr, Nd) in the presence of an excess of chlorine [p(Cl2, 25°C)=1 atm]. Single crystals were obtained by chemical transport reactions using chlorine [p(Cl2, 25°C)=1 atm] as transport agent [T2=1000°C→T1=900°C (Ln=La); T2=840°C→T1=780°C (Ln=Pr, Nd)]. Crystals of Ln3UO6Cl3 (Ln=La, Pr, Nd) were investigated by X-ray diffraction methods and La3UO6Cl3 additionally by high resolution electron microscopy. The compounds Ln3UO6Cl3 crystallize in the hexagonal spacegroup P63/m (No. 176) with Z=2 formula units per unit cell. Isotypical structure refinements resulted in R=3.04% respectively Rw=1.91% (Ln=La), R=4.72% respectively Rw=3.80% (Ln=Pr) and R=3.99% respectively Rw=2.49% (Ln=Nd). Uranium is coordinated with six oxygen atoms forming a trigonal prism. Lanthanide ions are 10-coordinated (6 oxygen atoms, 4 chlorine atoms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号