首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modifications of a turbulent boundary layer induced by blowing through a porous plate were investigated using large-eddy simulation. The Reynolds number (based on the length of the plate) of the main flow was about 850000. Large-eddy simulations of such a boundary layer needs a turbulent inflow condition. After a review of available turbulent inflow, we describe in details the condition we developed, which consisted of recycling the velocity fluctuations. Then we show the necessity for this inflow to be non-stationary and to be three dimensional with respect to the mass conservation equation. If these properties are not achieved, we found that the velocity fluctuations do not grow as expected along the domain. Finally, the results of simulations of the boundary layer submitted to blowing are compared with experimental measurements. The good agreement obtained validate our turbulent inflow conditions and also the blowing model used. PACS 47.27.Eq, 47.27.Te, 44.20.+b  相似文献   

2.
Turbulent buoyancy-driven flow in a rectangular cavity with two differentially heated opposite walls is investigated numerically by means of large-eddy simulation (LES). Different dynamic global-coefficient subgrid-scale models for weakly compressible flows are applied to simulate the natural convective flow. It is shown that transition of the boundary layer is delayed in cases where the model coefficients are fixed or changing dynamically according to the Germano identity. On the contrary, in the ‘global equilibrium’ approach, the result shows an earlier change in flow regime due to lower subgrid-scale viscosity. Further, it is also demonstrated that three-dimensional effects of the natural convective flow may be significant due to the presence of adiabatic side walls.  相似文献   

3.
The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. We present here a large-eddy simulation investigation of the interaction between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on shock/turbulent boundary layer interactions, we have used an inflow technique which does not introduce any energetically significant low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement with the experimental findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was related to the global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions.   相似文献   

4.
We present well-resolved large-eddy simulations (LES) of a channel flow solving the fully compressible Navier–Stokes equations in conservative form. An adaptive look-up table method is used for thermodynamic and transport properties. A physically consistent subgrid-scale turbulence model is incorporated, that is based on the Adaptive Local Deconvolution Method (ALDM) for implicit LES. The wall temperatures are set to enclose the pseudo-boiling temperature at a supercritical pressure, leading to strong property variations within the channel geometry. The hot wall at the top and the cold wall at the bottom produce asymmetric mean velocity and temperature profiles which result in different momentum and thermal boundary layer thicknesses. Different turbulent Prandtl number formulations and their components are discussed in context of strong property variations.  相似文献   

5.
This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation.  相似文献   

6.
7.
8.
Large-eddy simulation results are presented and discussed for turbulent flow and heat transfer in a plane channel with and without transverse square ribs on one of the walls. They were obtained with the finite-difference code Harwell-FLOW3D, Release 2, by using the PISOC pressure-velocity coupling algorithm, central differencing in space, and Crank-Nicolson time stepping. A simple Smagorinsky model, with van Driest damping near the walls, was implemented to model subgrid scale effects. Periodic boundary conditions were imposed in the streamwise and spanwise directions. The Reynolds number based on hydraulic diameter (twice the channel height) ranged from 10 000 to 40 000. Results are compared with experimental data, k-? predictions, and previous large-eddy simulations.  相似文献   

9.
Large eddy simulations of a three-dimensional turbulent thermal plume in an open environment have been carried out using a self-developed parallel computational fluid dynamics code SMAFS (smoke movement and flame spread) to study the thermal plume’s dynamics including its puffing, self-preserving and air entrainment. In the simulation, the sub-grid stress was modeled using both the standard Smagorinsky and the buoyancy modified Smagorinsky models, which were compared. The sub-grid scale (SGS) scalar flux in the filtered enthalpy transport equation was modeled based on a simple gradient transport hypothesis with constant SGS Prandtl number. The effect of the Smagorinsky model constant and the SGS Prandtl number were examined. The computation results were compared with experimental measurements, thermal plume theory and empirical correlations, showing good agreement. It is found that both the buoyancy modification and the SGS turbulent Prandtl number have little influence on simulation. However, the SGS model constant C s has a significant effect on the prediction of plume spreading, although it does not affect much the prediction of puffing.  相似文献   

10.
11.
An investigation of large-eddy simulation (LES) for turbulent channel flow with buoyancy effects was performed by solving the resolved incompressible Navier-Stokes equations under the Boussinesq approximation. The Smagorinsky eddy-viscosity model and Yoshizawa eddy-viscosity model were used to describe the unresolved subgrid scale (SGS) fluctuations respectively. After some numerical testing, the latter was further simplified so that it can be used in the dynamic model closure. A LES code was developed for parallel computations by using the parallel technique, and was run on the Dawn-1000 parallel computer. To demonstrate the viability and accuracy of the code, our results are compared with and found in good agreement with available LES results. The project supported by the National Natural Science Foundation of China and by the Youngster Funding of Academia Sinica  相似文献   

12.
13.
Temperature fluctuations occur due to thermal mixing of hot and cold streams in the T-junctions of the piping system in nuclear power plants, which may cause thermal fatigue of piping system. In this paper, three-dimensional, unsteady numerical simulations of coolant temperature fluctuations at a mixing T-junction of equal diameter pipes were performed using the large eddy simulation (LES) turbulent model. The experiments used in this paper to benchmark the simulations were performed by Hitachi Ltd. The calculated normalized mean temperatures and fluctuating temperatures are in good agreement with the measurements. The influence of the time-step ranging from 100 Hz to 1000 Hz on the numerical simulation results was explored. The simulation results indicate that all the results with different frequencies agree well with the experimental data. Finally, the attenuation of fluctuation of fluid temperature was also investigated. It is found that, drastic fluctuation occurs within the range of less than L/D = 4.0; the fluctuation of fluid temperature does not always attenuate from the pipe center to the wall due to the continuous generation of vortexes. At the top wall, the position of L/D = 1.5 has a minimum normalized mean temperature and a peak value of root-mean square temperature, whereas at the bottom wall, the position having the same characteristics is L/D = 2.0.  相似文献   

14.
A large-eddy simulation (LES) of a transitional separated flow over a plate with a semi-circular leading at low (<0.2%) and high (5.6%) free-stream turbulence (FST) has been performed, using a co-located grid with the Rhie–Chow pressure smoothing. A numerical trip is used to produce a high FST level and a dynamic subgrid-scale model is also employed in the current study. The entire transition process leading to breakdown to turbulence has been shown clearly by the flow visualisations using instantaneous spanwise vorticities, and the differences between the low- and high-FST cases are clearly visible. Coherent structures are also visualised using isosurfaces of the Q-criterion, and for the high-FST case, the spanwise-oriented quasi-two-dimensional rolls, which are clearly present in the low-FST case, are not visible anymore. Detailed quantitative comparisons between the present LES results and experimental data and the previous LES results at low FST using a staggered grid have been done and a good agreement has been obtained, indicating that the current LES using a co-located grid with pressure smoothing can also predict transitional flows accurately.  相似文献   

15.
This research work brings about additional contribution to validate the ultrasound scattering technique as a nonintrusive probe in the Fourier space for measurements performed in unsteady flows. In particular, this work reports experimental evidence of scattering from a turbulent thermal plume utilized as a testing flow. This technique is based upon the scattering of an ultrasound wave hitting and interacting with an unstable flow. The coupling among the acoustic mode with vorticity and entropy modes is derived from nonlinear terms of Navier–Stokes and energy equations. Scattering mechanism occurs when characteristic length scales of flows are comparable with wavelength of sound. Thus, it is possible to probe the flow at different length scales by changing the incoming frequency. The results allow verifying some theoretical predictions, such as the existence of a nonscattering angle. It was also observed, that both the phase and the Doppler shift of the Fourier's signal are linear, respectively, with respect to the time and the frequency of the incident wave. The Doppler shift allowed us to determine the advection velocity and has proved to be sensitive to the direction of the wave vector, to the scattering angle and also, we show that it is possible to have both positive and negative angles. The advection velocity increases with temperature and its values are coherent with those obtained with traditional techniques. Broadening and Doppler shift of the scattering signal allowed us to define the turbulence intensity, whose values are in agreement with those found in thermal plumes, where well-known techniques are currently used. This study has shown that the turbulence intensity increases weakly with temperature, nevertheless it seems more sensitive to the size of the structure under observation.  相似文献   

16.
This paper reports the results of a study on temperature inhomogeneities conducted on a thermal plume by using ultrasound scattering as a non-intrusive measurement technique. The plume rises from a metallic disk which can be heated up to 800 °C. The working fluid is air at atmospheric pressure. In the measurement technique, an incoming ultrasound wave is emitted towards the thermal plume. The incident wave is scattered because of non-linear couplings with the flow instabilities present in the measurement region. The scattered wave carries information about those flow instabilities. The technique allows for the retrieving of this information. The shape of the obtained spectrum of temperature fluctuations as a function of wave vector modulus is consistent with previous theoretical analysis. Three qualitatively different regions were identified: first, a production region characterized by a q2 law; secondly, a region with behavior as per q−3 associated with a buoyancy region and; finally, a dissipation region associated with a q−7 law. These spectral regions characterize the energy transfers mechanisms among the length scales of flow investigated here. A coefficient of anisotropy γ was defined to analyze anisotropic features of the flow.  相似文献   

17.
18.
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures. The project supported by the Special Funds for Major State Basic Research (G-1999-0222-07). The English text was polished by Keren Wang.  相似文献   

19.
One carries out three-dimensional large-eddy simulations of natural convection in a horizontal annulus using Smagorinsky's dynamic subgrid model. The onset of transition to turbulence and turbulent regimes are analyzed. The characteristics of unstable flows and their influence on the heat-transfer process are studied. To cite this article: E.L.M. Padilla, A. Silveira-Neto, C. R. Mecanique 333 (2005).  相似文献   

20.
王涛  李平  柏劲松  汪兵  陶钢 《爆炸与冲击》2013,33(5):487-493
采用拉伸涡亚格子尺度应力模型对湍流输运中的亚格子作用项进行模式化处理,发展了适用于可压多介质黏性流动和湍流的大涡模拟方法和代码MVFT(multi-viscous flow and turbulence)。利用MVFT代码对低密度流体界面不稳定性及其诱发的湍流混合问题进行了数值模拟。详细分析了扰动界面的发展,流场中冲击波的传播、相互作用、湍流混合区边界的演化规律,以及流场瞬时密度和湍动能的分布和发展。数值模拟获得的界面演化图像和流场中波系结构与实验结果吻合较好。三维和二维模拟结果的比较显示,两者得到的扰动界面位置、波系及湍流混合区边界基本一致,只是后期的界面构型有所不同,这也正说明湍流具有强三维效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号