首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental basis of the equivalence principle is reviewed, and the implications for the gravitational interactions of elementary particles are studied within a special relativistic framework. The gravitational red shift is treated in detail and is used to show that antiparticles also obey the equivalence principle. The profound consequences of a violation of the equivalence principle are discussed.  相似文献   

2.
Two problems have long been confused with each other: the gravitational redshift as discussed by the equivalence principle; and the Doppler shift observed by a detector which moves with constant proper acceleration away from a stationary source. We here distinguish these two problems and give for the first time a solution of the former which is exact within the context of the equivalence principle in a sense discussed in the paper. The equivalence principle leads to transformations between flat spacetimes. These are analyzed, and a generalized Lorentz transformation is proposed which covers transformations from inertial to uniformly accelerated frames of reference.  相似文献   

3.
A possible time variability ofG, implying a violation of the strong equivalence principle, was first proposed by P. A. M. Dirac in 1937. Since such a feature cannot be accommodated within either Newton’s or Einstein’s theories, a new theoretical framework is needed. In this paper we review one such possible scheme, the scale covariant theory, within which the consequences of a variableG on geophysics, astrophysics, and cosmology can be treated consistently. The global verdict is thatG may have varied by as much as a factor of 25 since the time of nucleosynthesis, without any disagreement emerging in any case. In spite of this result, we are not entitled to conclude from our analysis that a variableG has been shown to exist or that it is needed, but only that its variation iscompatible with known data. The proof thatG varies can in fact only come from direct observations. However, since the previous analyses had concluded that aG(t) would entail severe discrepancies with known data, the reversal of the verdict is believed to be significant, since it may hopefully spur new observational interest in this basic problem. Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981.  相似文献   

4.
Noting that the general relativistic ADM equation for the mass of a sphere of charged dust (with no angular momentum) reveals that the masses of point-like particles are determined solely by their electrical charge, electron models based on extended spheres of such purely electrical dust are examined. It is shown that for all realistic electron models of this type (where the observed electron mass is positive and many orders of magnitude smaller than either the Planck or ADM mass) the electron's bare active gravitational mass must be taken to be negative. Because of the negativity of the bare active gravitational mass, one of the two realistic models leads to a violation of the weak equivalence principle, but the other does not. A means of testing whether negative mass obeys the equivalence principle is mentioned.  相似文献   

5.
6.
7.
Two thought experiments are discussed which suggest, first, a geometric interpretation of the concept of a (say, vector) potential (i.e., as a kinematic quantity associated with a transformation between moving frames of reference suitably related to the problem) and, second, that, in a quantum treatment one should extend the notion of the equivalence principle to include not only the equivalence of inertial forces with suitable real forces, but also the equivalence of potentials of such inertial forces and the potentials of suitable real forces. The two types of cancellation are physically independent of each other, because of the Aharonov-Bohm effect. Finally, we show that the latter effect itself can be understood geometrically as a kinematic effect arising upon the transformation between the two reference frames.On leave of absence from the Department of Physics, Tel-Aviv University, Israel, and the Department of Physics, Yeshiva University, New York.Supported by the NSF under Contract GP-14911.  相似文献   

8.
A differential manifold (d-manifold, for short) can be defined as a pair (M, C), where M is any set and C is a family of real functions on M which is (i) closed with respect to localization and (ii) closed with respect to superposition with smooth Euclidean functions; one also assumes that (iii) M is locally diffeomorphic to Rn. These axioms have a straightforward physical interpretation. Axioms (i) and (ii) formalize certain compatibility conditions which usually are supposed to be assumed tacitly by physicists. Axiom (iii) may be though of as a (nonmetric) version of Einstein's equivalence principle. By dropping axiom (iii), one obtains a more general structure called a differential space (d-space). Every subset of Rn turns out to be a d-space. Nevertheless it is mathematically a workable structure. It might be expected that somewhere in the neighborhood of the Big Bang there is a domain in which space-time is not a d-manifold but still continues to be a d-space. In such a domain we would have a physics without the (usual form of the) equivalence principle. Simple examples of d-spaces which are not d-manifolds elucidate the principal characteristics the resulting physics would manifest.on leave of absence from the Institute of Nuclear Physics, Department of Theoretical Physics, ul. Radzikowskiego 152, 31–342 Cracow, Poland.  相似文献   

9.
10.
If the equivalence principle is violated, then observers performing local experiments can detect effects due to their position in an external gravitational environment (preferred-location effects) or can detect effects due to their velocity through some preferred frame (preferred-frame effects). We show that the principle of energy conservation implies a quantitative connection between such effects and structure-dependence of the gravitational acceleration of test bodies (violation of the Weak Equivalence Principle). We analyze this connection within a general theoretical framework that encompasses both non-gravitational local experiments and test bodies as well as gravitational experiments and test bodies, and we use it to discuss specific experimental tests of the equivalence principle, including non-gravitational tests such as gravitational redshift experiments, Eötvös experiments, the Hughes-Drever experiment, and the Turner-Hill experiment, and gravitational tests such as the lunar-laser-ranging “Eötvös” experiment, and measurements of anisotropies and variations in the gravitational constant. This framework is illustrated by analyses within two theoretical formalisms for studying gravitational theories: the PPN formalism, which deals with the motion of gravitating bodies within metric theories of gravity, and the TH?μ formalism that deals with the motion of charged particles within all metric theories and a broad class of non-metric theories of gravity.  相似文献   

11.
12.
We investigate the restrictions on scalar-tensor theories of gravitation implied by the assumptions: (i) the field equations are derivable from an action principle, (ii) units of mass length and time are defined by atomic standards, and (iii) the principle of equivalence holds whenever gravitational self-energy can be neglected. We show that in all these theories the presence of gravitational energy in a system leads to violations of the principle of equivalence.  相似文献   

13.
The role of the equivalence principle in the context of non-relativistic quantum mechanics and matter wave interferometry, especially atom beam interferometry, will be discussed. A generalised form of the weak equivalence principle which is capable of covering quantum phenomena too, will be proposed. It is shown that this generalised equivalence principle is valid for matter wave interferometry and for the dynamics of expectation values. In addition, the use of this equivalence principle makes it possible to determine the structure of the interaction of quantum systems with gravitational and inertial fields. It is also shown that the path of the mean value of the position operator in the case of gravitational interaction does fulfill this generalised equivalence principle.  相似文献   

14.
It is well known that Einstein gravity is non-renormalizable; however a generalized approach is proposed that leads to Einstein gravity after renormalization. This then implies that at least one candidate for quantum gravity treats all matter on an equal footing with regard to the gravitational behaviour. Harsh constraints are also placed on any anti-matter gravity theory if one does not wish to violate the conservation of energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Any violation of the equivalence principle (EP) between test masses in the near-Earth orbit is about 500 times bigger than on the ground, which makes the case for a space experiment very strong. Indeed, ESA and NASA (the European Space Agency and the American National Aeronautics and Space Administration) are currently studying at Phase A level the space mission STEP, whose main goal is to test the universality of free fall to 1 part in 1017 by means of a combination of very advanced technologies (drag free with proportional thrusters, superfluid-He temperature, SQUID sensors). We discuss the key features of STEP as well as some novel ideas about the possibility of testing the equivalence principle at room temperature in a non-drag-free satellite. Paper presented at the 6th Cosmic Physics National Conference, Palermo, 3–7 November 1992.  相似文献   

16.
17.
Neutrino oscillations are analyzed in an accelerating and rotating reference frame, assuming that the gravitational coupling of neutrinos is flavor dependent, which implies a violation of the equivalence principle. Unlike the usual studies in which a constant gravitational field is considered, such frames could represent a more suitable framework for testing if a breakdown of the equivalence principle occurs, due to the possibility to modulate the (simulated) gravitational field. The violation of the equivalence principle implies, for the case of a maximal gravitational mixing angle, the presence of an off-diagonal term in the mass matrix. The consequences on the evolution of flavor (mass) eigenstates of such a term are analyzed for solar (oscillations in the vacuum) and atmospheric neutrinos. We calculate the flavor oscillation probability in the non-inertial frame, which does depend on its angular velocity and linear acceleration, as well as on the energy of neutrinos, the mass-squared difference between two mass eigenstates, and on the measure of the degree of violation of the equivalence principle (). In particular, we find that the energy dependence disappears for vanishing mass-squared difference, unlike the result obtained by Gasperini, Halprin, Leung, and other physical mechanisms proposed as a viable explanation of neutrino oscillations. Estimations on the upper values of are inferred for a rotating observer (with vanishing linear acceleration) comoving with the earth, hence rad/sec, and all other alternative mechanisms generating the oscillation phenomena have been neglected. In this case we find that the constraints on are given by for solar neutrinos and for atmospheric neutrinos. Received: 14 December 2000 / Published online: 15 March 2001  相似文献   

18.
The standard argument for the validity of Einstein?s equivalence principle in a non-relativistic quantum context involves the application of a mass superselection rule. The objective of this work is to show that, contrary to widespread opinion, the compatibility between the equivalence principle and quantum mechanics does not depend on the introduction of such a restriction. For this purpose, we develop a formalism based on the extended Galileo group, which allows for a consistent handling of superpositions of different masses, and show that, within such scheme, mass superpositions behave as they should in order to obey the equivalence principle.  相似文献   

19.
A prerelativistic Machian theory of gravitation in a relative configuration space of the type developed in Barbour and Bertotti (1977) is proposed, which fulfils the principle of equivalence in a natural way. This is accomplished by assuming that the basic interactions with which the dynamical Lagrangian is constructed are three-body and velocity dependent. Gravity arises between two bodies when other masses move-in particular when the universe expands (or contracts). The properties and physical consequences of this theory are very similar to the previous one; in particular the two-body problem has a small post-Newtonian correction leading to an advance of the periastron, and to the determination of the velocity of expansion of the universe. We find that the motion of test particles introduces naturally into the theory the restricted covariance group, in which any space transformation that preserves simultaneity is allowed. This permits us to define an inertial frame of reference, and to obtain the analog of the equation of geodesic deviation. Finally, we discuss the effect of the anisotropy of the universe on the mass.  相似文献   

20.
In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time variations of the natural "constants" within the reach of near-future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号