首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
This paper has extended nonequilibrium Monte Carlo (MC) approach to simulate oscillatory shear flow in a lattice block copolymer system. Phase transition and associated rheological behaviors of multiple self-avoiding chains have been investigated. Stress tensor has been obtained based upon sampled configuration distribution functions. At low temperatures, micellar structures have been observed and the underlying frequency-dependent rheological properties exhibit different initial slopes. The simulation outputs are consistent with the experimental observations in literature. Chain deformation during oscillatory shear flow has also been revealed. Although MC simulation cannot account for hydrodynamic interaction, the highlight of our simulation approach is that it can, at small computing cost, investigate polymer chains simultaneously at different spatial scales, i.e., macroscopic rheological behaviors, mesoscopic self-assembled structures, and microscopic chain configurations.  相似文献   

2.
The phase behavior of symmetric ABA triblock copolymers containing a semiflexible midblock is studied by lattice Monte Carlo simulation. As the midblock evolves from a fully flexible state to a semiflexible state in terms of increase in its persistence length, different phase behaviors are observed while cooling the system from an infinite high temperature to a temperature below T(ODT) (order-disorder transition temperature). Within the midblock flexibility range we studied (l(p)N(c)相似文献   

3.
The self-assembly of diblock copolymers confined in channels of various shaped cross sections is studied using a simulated annealing technique with the "single-site bond fluctuation" model. In the bulk, the asymmetric diblock copolymers used in this study form hexagonally packed cylinders with period L0. The cross sections of the confining channels are of different shapes including regular triangles, rectangles, squares, regular hexagons, regular octagons, and ellipses. For a given geometry, the channel size (characterized by one or two lengths) is varied from very small to several times of L0. It is found that the geometry and size of the confining channels have a large effect on the structure and symmetry of the self-assembled morphologies. Multiple packed cylinders with the symmetry of the confining channels are the major morphologies for low-symmetry cross sections such as triangle, rectangle, and square. More complex structures such as helices or stacked toroids spontaneously form when the confining channels are shaped such as a regular hexagon, a regular octagon, or an ellipse. The domain spacing of the self-assembled structures can be altered by the shape and size of the confining channels. Our results are consistent with available experiments. These results indicate that the self-assembled structures of block copolymers can be manipulated by the shape of the confining channels.  相似文献   

4.
Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain. When 0.3相似文献   

5.
ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self-consistent field theory and simulation, we systematically examined the self-assembly behavior of linear ABCA tetrablock copolymers in a 2D space. The simulation was carried out under conditions of symmetrical compositions and interactions. We focus on the influence of chain length ratio of block A and interactions between block A and other blocks B and C on the self-assembly behavior of the copolymer system. The simulation results show that most of the structures self-assembled by the ABCA tetrablock copolymers are centrosymmetric, such as diblock-like lamella phase, two kinds of lamellae with beads at interface, two kinds of hierarchical lamella phase, hexagonal honeycomb-like phase, lamella phase with mixed BC and hexagonal spheres with mixed BC. Furthermore, we find that a novel noncentrosymmetric Janus spheres can be obtained when the interaction between blocks B and C is strong, whereas a noncentrosymmetric lamella phase was obtained at weak interaction between blocks B and C. Phase diagrams for the ABCA tetrablock copolymers with different interaction strength between blocks B and C are constructed by comparing free energies of candidate ordered structures. In addition, studies on the metastable behavior of the system reveal that enthalpy plays an important role in the metastable behavior of the ABCA tetrablock copolymer system. Our work can provide useful guide for structure control of such kind of tetrablock copolymers in experiments.  相似文献   

6.
Although most ABA triblock copolymers are molecularly symmetric (i.e., the terminal blocks possess the same mass), molecularly asymmetric A1BA2 triblock copolymers are of greater fundamental interest in that they can be used to explore the transition from diblock to triblock copolymer in systematic fashion. In this study, we use a lattice Monte Carlo method known as the cooperative motion algorithm to simulate molten ABA triblock copolymers possessing a short terminal block to explore the effect of molecular asymmetry on the copolymer order–disorder transition (ODT). Reduced ODT temperatures, discerned by simultaneously analyzing several features of the simulation results, are found to compare favorably with experimental data. Of particular interest here is the initial depression in the ODT temperature for A1BA2 copolymers possessing a relatively short terminal (A2) block. This signature feature is successfully captured by the simulations and is found to be strongly dependent on composition, but weakly dependent on copolymer chain length. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

7.
《Chemical physics》2005,308(1-2):171-179
Compatibility of A/B and functionalized A ternary polymer mixtures was studied by Monte Carlo simulation in a two-dimensional lattice. Polymer A was a nonreactive polymer, whereas polymer B was a reactive polymer and immiscible with polymer A. Functionalized polymer A could react with the end group of polymer B, leading to the formation of block copolymers. Simulation results showed the phase domain sizes dropped considerably with increasing functionalized polymer A content, indicating that the compatibility between polymer A and B could be markedly improved with the introduction of functionalized polymer A. Moreover, it was shown that the resulting block copolymers tended to distribute at the phase interface between polymer A and B, and the block copolymer conformation depended on the structures of polymer B and functionalized polymer A. In case 1, i.e., both polymer B and functionalized polymer A were with single end group, it could be found that the block A and block B of resulting A–B copolymer inserted into polymer A and polymer B phase domains, respectively. In case 2, i.e., functionalized polymer A was with single end group and polymer B was with double end groups, it was found that the resulting A–B–A triblock copolymer tended to connect two neighbor separated polymer A phase domains. However, in case 3, namely functionalized polymer A was with double end groups and polymer B was with single end group, it was found that the resulting B–A–B triblock copolymer was likely to form a folding conformation. These lead to the different compatibilizing effects for different polymer structures. Comparing with case 1 and case 2, functionalized polymer A with double end groups (case 3) had less effective to compatibilize the A/B polymer blends. For the purpose of comparison, same simulations were carried out in a three-dimensional lattice. The results showed the compatibility behavior of the mixtures was similar to those in the two-dimensional lattice with the addition of functionalized polymer A. However, the conformation of the resulting block copolymers was different from that in the two-dimensional lattice.  相似文献   

8.
We have performed lattice Monte Carlo simulations to study the self-assembled morphology of symmetric diblock copolymers in nanopores. The pore diameter and surface preference are systematically varied to examine their effects on the chain conformations, structures of various morphologies, and their phase transition. Various ensemble-averaged profiles and quantities are used to provide detailed information about the system. The simulation results are also compared with the predictions of a strong-stretching theory commonly used in the literature. Such comparisons reveal the deficiencies of this theory in describing the morphologies under cylindrical confinement, and call for further theoretical studies using more accurate formalisms.  相似文献   

9.
A reversible addition-fragmentation chain transfer (RAFT) agent, the methyl-2-(n-butyltrithiocarbonyl)propanoate (MBTTCP) has shown to be efficient in controlling the polymerization of N,N-dimethylacrylamide (DMA), N-isopropylacrylamide (NIPAM) and N-acryloyloxysuccinimide (NAS). Two different strategies have been studied to synthesize block copolymers based on one PNIPAN block and the other a random copolymer of DMA and NAS. When a PNIPAM trithiocarbonate-terminated is used as macromolecular chain transfer agent for the polymerization of a mixture of NAS and DMA, well-defined P(NIPAM-b-(NAS-co-DMA)) block copolymers were obtained with a low polydispersity index. These thermoresponsive block copolymers dissolved in aqueous solution at 25 °C and self-assembled into micelles when the temperature was raised above the LCST of the PNIPAM block. The micelle shell containing NAS units was further crosslinked using a primary diamine in order to get shell-crosslinked nanoparticles. Upon cooling below the LCST of PNIPAM this structure may easily reorganize to form nanoparticles with a water filled hydrophilic core.  相似文献   

10.
甲壳型液晶高分子的发展很大程度上依赖于聚合物自组装的发展,而各种可设计、可预测、可调控的自组装策略的涌现,将甲壳型液晶高分子研究推向前所未有的高度,同时也极大地丰富了高分子化学与物理的内容,提升了研究水准.研究表明,侧链"甲壳效应"在调控甲壳型液晶高分子有序结构等方面有着重要作用.本综述从甲壳型液晶高分子设计合成、液晶相态调控、嵌段共聚物自组装和功能化应用等方面,总结和评述了近年来该领域国内的最新研究进展.最后,本综述总结了甲壳型液晶高分子在发展中所面临的主要问题,并对其发展趋势进行了展望.  相似文献   

11.
Polypeptide-based diblock copolymers forming either well-defined self-assembled micelles or vesicles after direct dissolution in water or in dichloromethane have been studied combining light and neutron scattering with electron microscopy experiments. The size of these structures could be reversibly manipulated as a function of environmental changes such as pH and ionic strength in water. Compared to other pH-responsive self-assembled systems based on "classical" polyelectrolytes, these polypeptide-based nanostructures present the ability to give a response in highly salted media as the chain conformational ordering can be controlled. This makes these micelles and vesicles suitable for biological applications: they provide significant advantages in the control of the structure and function of supramolecular self-assemblies.  相似文献   

12.
We describe the self-assembly of A-B-A triblock copolymers in thin films composed of a soft polydimethylsiloxane (PDMS) central block (B) and two polypeptidic (A) blocks, poly(γ-benzyl)-l-glutamate (PBLG). The PBLG segment exhibits depending on the chain length two distinct secondary conformations either a β-sheet or a α-helical conformation. The direct relationship between the surface morphology and the secondary conformation of the polypeptide segment has been evidenced by atomic force microscopy. For chain lengths below 20 U the polypeptide segments adopt preferentially a β-sheet secondary structure and the triblock copolymer self-assembled in fibers. Moreover, the fiber diameters increased with the chain length of the triblock copolymer. For chain lengths above 20, the α-helical structure is stabilized and a lamellar morphology is formed driven by rod-rod interactions in spite of the very asymmetric composition of the triblock copolymer. However, decreasing the film thickness from 25 to 8 nm, i.e., below the L/2 and due to the preferential attraction of the polypeptide block for the hydrophilic substrate employed, instead of a lamellar morphology a rod-like morphology could be found. Thus, the use of hybrid block copolymer containing polypeptides with particular secondary structures offers novel alternatives to control the self-assembly in thin films compared to traditional amorphous block copolymers.  相似文献   

13.
Chirality-driven microphase-separated morphology, poly(l-lactide) (PLLA) left-handed nanohelices hexagonally packed in PS matrix, was obtained from chiral diblock copolymers, poly(styrene)-b-poly(l-lactide). This is perhaps for the first time; the helical superstructures of chiral block copolymers were generated in the bulk and self-assembled to a two-dimensionally (2D) packed lattice. Now, the analyses of block copolymer thermodynamics should be complicated by the chiral entities of constituted components. Orderly packed nanohelical channels can be obtained after hydrolysis, and this provides new opportunities for block copolymer applications in the fields of nanosciences.  相似文献   

14.
嵌段共聚物可自发组装形成形貌丰富的纳米粒子和有序纳米结构的材料,为纳米材料和纳米技术领域提供了很重要的新材料和新手段.该领域的进一步发展提出了对嵌段共聚物的自组装体赋予功能性的要求,即需要通过可控聚合反应合成反应性嵌段共聚物,并且对其自组装的纳米粒子进行结构、形状及功能性的调控.本文针对以上研究目标,结合本课题组在该领...  相似文献   

15.
Using dissipative particle dynamics simulation, structural evolution from concentric multicompartment micelles to raspberry-like multicompartment micelles self-assembled from linear ABC triblock copolymers in selective solvents was investigated. The structural transformation from concentric micelles to raspberry-like micelles can be controlled by changing either the length of B blocks or the solubility of B block. It was found that the structures with B bumps on C surface (B-bump-C) are formed at shorter B block length and the structures with C bumps on B surface (C-bump-B) are formed at relative lower solubility of B blocks. The formation of B-bump-C is entropy-driven, while the formation of C-bump-B is enthalpy-dominated. Furthermore, when the length of C blocks is much lower than that of B blocks, an inner-penetrating vesicle was discovered. The results gained through the simulations provide an insight into the mechanism behind the formation of raspberry-like micelles.  相似文献   

16.
Photoinduced reversible transmittance modulation was achieved with the self-assembled block copolymer micelles. A large conformational change of the well-defined rod-coil diblock copolymers containing azobenzene and ether groups in the main chain of the rod block induced a remarkable macroscopic change which can be observed with the naked eye.  相似文献   

17.
Thermoresponsive block copolymers are of interest for delivery vehicles in the body. Often an interior domain is designed for the active agent and the exterior domain provides stability in the bloodstream, and may carry a targeting ligand. There is still much to learn about how block sequence and chain end identity affect micelle structure, size, and cloud points. Here, hydrophilic oligo(ethylene glycol) methyl ether acrylate and more hydrophobic di(ethylene glycol) methyl ether methacrylate monomers were polymerized to give amphiphilic block copolymers with amphiphilic chain ends. The block sequence and chain end identity were both controlled by appropriate choice of RAFT chain transfer agents to study the effect of ‘matched’ and ‘mismatched’ chain end polarity with amphiphilic block sequence. The affect of matching or mismatching chain end polarity and block sequence was studied on the hydrodynamic diameter, cloud point, and temperature range of the chain collapse on linear di‐ and triblock copolymers and star diblock polymers. The affects of matching or mismatching chain end polarity were significant with linear diblock copolymers but more complex with triblock and star copolymers. Explanations of these results may help guide others in designing thermoresponsive block copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2838–2848  相似文献   

18.
Numerical self‐consistent field (SCF) lattice computations allow a priori determination of the equilibrium morphology and size of supramolecular structures originating from the self‐assembly of neutral block copolymers in selective solvents. The self‐assembly behavior of poly(ethylene oxide)‐block‐poly‐ε‐caprolactone (PEO‐PCL) block copolymers in water was studied as a function of the block composition, resulting in equilibrium structure and size diagrams. Guided by the theoretical SCF predictions, PEO‐PCL block copolymers of various compositions have been synthesized and assembled in water. The size and morphology of the resulting structures have been characterized by small‐angle X‐ray scattering, cryogenic transmission electron microscopy, and multiangle dynamic light scattering. The experimental results are consistent with the SCF computations. These findings show that SCF is applicable to build up roadmaps for amphiphilic polymers in solution, where control over size and shape are required, which is relevant, for instance, when designing spherical micelles for drug delivery systems © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 330–339  相似文献   

19.
甲壳型液晶高分子研究进展与展望   总被引:3,自引:0,他引:3  
简要介绍了甲壳型液晶高分子的模型理论, 概述了当前国内外对甲壳型液晶高分子设计、 液晶相态、 性质及基于甲壳型液晶高分子的嵌段共聚物体系的设计和自组装性质等研究进展, 展望了今后的研究方向.  相似文献   

20.
Linear chain surfactants in a densely packed arrangement (such as alkane chains in lipid monolayers in the “uniform tilt” structures) are described by a crude coarse-grained model where the endgroups grafted on the interface form a regular lattice and the chains are described by the bond fluctuation model with chains containing N = 4 effective monomers only. Square-well interactions between the monomers are studied for both the attractive and repulsive case for three choices of the interaction range. None of these models exhibits a structure with uniform tilt. For attractive interactions the last bond has a strong tendency to fold back thus leading to a very high density close to the interface. Only when an intrachain-potential favoring stiff chain configurations also is included one can obtain configurations with uniform tilt order. Although related models (with much longer chain lengths and lower grafting densities) are very useful for the study of polymer brushes, the present case of very short chains in a high-density state clearly is plagued by various lattice artefacts and it is concluded that for modelling linear chain surfactants one should use an off-lattice model even on a coarse-grained level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号