首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The in situ Fourier transform infrared spectroscopic study of isotactic polypropylene showed that structural changes are induced at liquid nitrogen temperature, and start to show up in the FTIR spectra with heating from ?196 to +200 °C. This structural change leads to the detection of an abnormal behavior in the MIR absorption spectra of the investigated sample. Lowering the temperature brought the chains closer together and so increased the interchain interaction. At ?196 °C splitting of some regularity bands assigned to helical chains within the crystalline region was observed, showing that the regularity of the chains increases because of cooling. Heating the samples from liquid nitrogen temperature caused an opposite conformational disordering, which resulted in the appearance of several new broad bands in the ranges: 600–700, 1614–1640, and 3050–3550 cm?1. These structural changes might be due to both twisting and folding of the chains, which gave rise to bands assigned to the various bending modes of CH2 molecules, in addition to the rotational isomers (conformers) resulting from rotation of the vinyl and alkyne end groups. Moreover, our experimental study of the behavior of several regularity bands suggests that at temperatures in the vicinity of +120 °C another high temperature structural change resulting from the disordering of helical sequences in the noncrystalline region takes place. Differential scanning calorimetry thermograms of the thermally treated and an untreated sample were found to confirm the obtained results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2829–2842, 2005  相似文献   

2.
The crystallization kinetics of biodegradable poly(butylene succinate‐co‐adipate) (PBS/A) copolyester was investigated by using differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The Avrami and Ozawa equations were used to analyze the isothermal and nonisothermal crystallization kinetics, respectively. By using wide‐angle X‐ray diffraction (WAXD), PBS/A was identified to have the same crystal structure with that of PBS. The spherulitic growth rates of PBS/A measured in isothermal conditions are very well comparable with those measured by nonisothermal procedures (cooling rates ranged from 0.5 to 15 °C/min). The kinetic data were examined with the Hoffman–Lauritzen nucleation theory. The observed spherulites of PBS/A with different shapes and textures strongly depend on the crystallization temperatures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3231–3241, 2005  相似文献   

3.
The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225–2235, 1998  相似文献   

4.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

5.
The physical structure of poly(methylphenyl) silane (PMPS) has been investigated using wide-angle x-ray scattering at various temperatures and optical polarizing microscopy. The results obtained by these techniques clearly show the existence of an ordered phase in PMPS. The crystallinity of our sample was estimated to be about 10% at room temperature. Below 190°C, the atactic chains pack into a monoclinic crystalline lattice of near hexagonal symmetry, with two types of disorder existing in the packing. At about 190°C, a phase transition to a liquid crystalline columnar hexagonal packing (Dho) occurs. Finally, the sample melts into an isotropic amorphous phase. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1727–1736, 1997  相似文献   

6.
This research was focused on the design and execution of new synthetic routes to low‐temperature‐curable poly(silarylene–siloxane)polyimides. The synthesis of individual oligoimide and silarylene–siloxane blocks was followed by hydrosilylation polymerization to produce crosslinked copolymers. The silarylene–siloxane and polyimide blocks were structurally characterized by IR and 1H NMR spectroscopy and size exclusion chromatography. The high‐temperature resistance of the copolymers was evaluated through the measurement of heat distortion temperatures (THD's) via thermomechanical analysis and by the determination of the weight loss at elevated temperatures via thermogravimetric analysis. Glass‐transition temperatures (Tg's) of the silarylene–siloxane segments were measured by differential scanning calorimetry. Hydrosilylation curing was conducted at 60 °C in the presence of chloroplatinic acid (H2PtCl6). The copolymers displayed both high‐temperature resistance and low‐temperature flexibility. We observed Tg of the silarylene–siloxane segment as low as ?77 °C and THD of the polyimide segment as high as 323 °C. The influence of various oligoimide molecular weights on the properties of copolymers containing the same silarylene–siloxane was examined. The effect of various silarylene–siloxane molecular weights on the properties of copolymers containing the same oligoimide was also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4922–4932, 2005  相似文献   

7.
The nonisothermal cold crystallization behavior of intercalated polylactide (PLA)/clay nanocomposites (PLACNs) was studied using differential scanning calorimetry, polarized optical microscope, X‐ray diffractometer, dynamic mechanical thermal analysis, and Fourier transform infrared spectrometer. The results show that both the cold crystallization temperature (Tcc) and melting point (Tm) of PLA matrix decreases monotonously with increasing of clay loadings, accompanied by the decreasing degree of crystallinity (Xc%) at the low heating rates (≤5 °C/min). However, the Xc% of PLACNs presents a remarkable increase at the high heating rate of 10 °C/min in contrast to that of neat PLA. The crystallization kinetics was then analyzed by the Avrami, Jezioney, Ozawa, Mo, Kissinger and Lauritzen–Hoffman kinetic models. It can be concluded that at the low heating rate, the cold crystallization of both the neat PLA and nanocomposites proceeds by regime III kinetics. The nucleation effect of clay promote the crystallization to some extent, while the impeding effect of clay results in the decrease of crystallization rate with increasing of clay loadings. At the high heating rate of 10 °C/min, crystallization proceeds mainly by regime II kinetics. Thus, the formation of much more incomplete crystals in the PLACNs with high clay loadings due to the dominant multiple nucleations mechanism in regime II, may have primary contribution to the lower crystallization kinetics, also as a result to the higher degree of crystallinity and lower melting point in contrast to that of neat PLA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1100–1113, 2007  相似文献   

8.
A triethyl-ammonium functionalized 4-nitro-4′-alkoxy azobenzene mesogen with a 10-carbon spacer (azo10Q, a ‘surfactomesogen’) was complexed in equimolar proportions to a variety of oppositely charged polyelectrolytes, and studied by differential scanning calorimetry (DSC), polarizing optical microscopy, and X-ray diffraction. The complexation generates a single-layer smectic A mesophase over a very wide temperature range from a surfactomesogen that, alone, melts directly to the isotropic phase. The clearing temperatures, ranging from 130 to 190 °C and generally higher than the melting point of azo10Q, are dependent on the nature of the polyelectrolyte as well as its molecular weight. In contrast, a prominent glass transition near ambient temperature appears to be independent of molecular weight, but varies somewhat with the type of polyelectrolyte. A second Tg-like transition of much lower intensity is detectable at higher temperatures (generally above 100 °C), and, with literature support, is tentatively attributed to nanophase separation involving sublayer planes in the lamellar packing structure. A series of nonequimolar complexes was also investigated, and it was found that, with decreasing azo10Q content, the clearing temperature viewed by DSC decreases rapidly in intensity (and somewhat in temperature) and then disappears although birefringence remains, whereas the lower glass transition increases rapidly in temperature to finally merge with the upper one. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3421–3431, 2005  相似文献   

9.
An alkoxysilane compound possessing maleimide moiety (MSM) was prepared from N‐(4‐hydroxyphenyl)maleimide and 3‐glycidoxypropyltrimethoxysilane and was used as a modifier of epoxy resins. In situ curing epoxy resins with MSM resulted in epoxy resins with good homogeneity. Just 5–10 wt % of MSM is sufficient to yield high glass transition temperature (165 °C), good thermal stability above 360 °C, and high flame retardancy (LOI = 30) to bisphenol‐A‐based epoxy resins. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5787–5798, 2005  相似文献   

10.
The thermal reshaping of gold nanorods has been slowed by grafting a diblock copolymer [P(S-b-S-N3)] containing an outer polystyrene (PS) brush and a short, inner photo-cross-linkable PS-azide block. The P(S-b-S-N3)-Au NRs were dispersed in a PS thin film and reshaping was investigated using scanning electron microscopy and UV–Vis spectroscopy. For P(S-b-S-N3)-Au NRs in PS, the longitudinal surface plasmon resonance decreased from about 880 toward 750 nm upon annealing at 100 °C, 150 °C, and 200 °C. This blue shift increased in strength as temperature increased. However, this reshaping of P(S-b-S-N3)-Au NRs was slower than that of Au NRs grafted with a poly(ethylene glycol) brush that was dispersed in poly(methyl methacrylate). By slowing down reshaping at elevated temperature, polymer thin film devices that heat during use (e.g., polarization dependent filters) can exhibit a longer lifetime. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 301–307  相似文献   

11.
We report the synthesis of a new high-temperature liquid-crystalline thermoset based on the phenylethynyl functional group. The monomer was a nematic thermotropic liquid crystal with a melting temperature of 268 °C. The extrapolated onset of the cure exotherm occurred at 313 °C. The cured thermoset retained the nematic liquid-crystalline order of the parent monomer. The monomer and crosslinked resin were characterized by differential scanning calorimetry, optical microscopy, and thermogravimetric analysis. The thermal stability of the crosslinked resin was determined in both air and nitrogen atmospheres at various heating rates. The onset of weight loss in air and nitrogen atmospheres was determined to be 397 and 422 °C, respectively, for a heating rate of 10 °C/min. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4184–4190, 1999  相似文献   

12.
Thermal stability, crystallization, morphological development, subsequently melting, and crystallinity control of a syndiotactic 1,2‐polybutadiene sample were carefully carried out by thermogravimetry (TGA), polarized optical microscopy (POM), differential scanning calorimetry (DSC), temperature‐modulated differential scanning calorimetry (TMDSC), and wide‐angle X‐ray diffraction (WAXD), respectively. The experiments indicate that thermal cross‐linking reaction rates under nitrogen protection and in air are different for this polymer at temperature above 155 °C. Under nitrogen protection, the thermal cross‐linking reaction rate is delayed and the mechanism of melt crystallization obtained from the DSC results is in good accordance with that from POM observation. TMDSC results indicate that melting–recrystallization–melting model is more proper to explain the double melting events of this sample. At the same time, the evolution of the degree of crystallinity as the function of the time was investigated by WAXD profiles for the samples firstly crystallized at 145 °C for 1 h and then kept at 163 °C mediated between the temperatures of the double peaks. It shows that as prolonging the annealing time at 163 °C thermal cross‐linking reactions possibly occur, leading to gradual reduction of the apparent crystallite sizes, evaluated by Scherrer equation and the degree of crystallinity. The changing sequence of the relative intensity of the stronger four diffraction peaks with time due to thermal cross‐linking reactions is (111)/(201) > (210) > (010) > (200)/(110). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2885–2897, 2005  相似文献   

13.
The elastic properties of PVDF have been investigated as a function of temperature. The propagation velocity and absorption of longitudinal and transverse ultrasonic waves have been measured at a constant frequency of 2 MHz and temperatures between –20 and 100 °C. Hence, the temperature dependences of storage and loss elastic constants have been obtained for temperatures between –20 and 100 °C. It has been seen that the relaxation behavior is affected from the form of mechanical disturbance. For the longitudinal mode, only one relaxation peak at 42 °C, but for transverse mode three relaxation peaks at 28 °C, 60 °C, and 94 °C have been observed. The results have been compared with the literature values obtained previously for PVDF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2862–2873, 2005  相似文献   

14.
The initial stages of growth of the lamellar phase in a block copolymer solution were observed with polarizing optical microscopy (POM). Measurements were made on a poly(styrene‐b‐isoprene) diblock copolymer with block molecular weights of 15 and 13 kg/mol, respectively, dissolved in dioctyl phthalate with 70% polymer by volume. Upon cooling from above the order–disorder transition temperature, 89.5 °C, to temperatures from 87.5 to 88.5 °C, four distinct types of grain were observed: ellipsoidal single grains, twinned ellipsoidal grains, 2‐fold twinned grains, and spherulites. The relative populations were distributed as 50% single ellipsoids, 25% twinned ellipsoids, 10% 2‐fold twinned grains, and 15% spherulites. These grain types cover a range of lamellae orientation. For example, the surface of a 2‐fold twinned grain is composed of lamellar edges, whereas the spherulite surface is composed of lamellar planes. The specific grain types that arise give insight into the thermodynamic and kinetic forces governing lamellae ordering. Furthermore, growth front velocities of individual grains were measured after rapid quenches from above TODT. These results were compared to the predictions of Goveas and Milner. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 405–412, 2005  相似文献   

15.
We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253–258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be −2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220–230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3–0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230–240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679–1694, 1998  相似文献   

16.
Trimethoxyvinylsilane (TMVS) was quantitatively polymerized at 130 °C in bulk, using dicumyl peroxide (DCPO) as initiator. The polymerization of TMVS with DCPO was kinetically studied in dioxane by Fourier transform near‐infrared spectroscopy. The overall activation energy of the bulk polymerization was estimated to be 112 kJ/mol. The initial polymerization rate (Rp) was expressed by Rp = k[DCPO]0.6[TMVS]1.0 at 120 °C, being closely similar to that of the conventional radical polymerization involving bimolecular termination. The polymerization system involved electron spin resonance (ESR) spectroscopically observable polymer radicals under the actual polymerization conditions. ESR‐determined apparent rate constants of propagation and termination were 13 L/mol s and 3.1 × 104 L/mol s at 120 °C, respectively. The molecular weight of the resulting poly(TMVS)s was low (Mn = 2.0–4.4 × 103), because of the high chain transfer constant (Cmtr = 4.2 × 10?2 at 120 °C) to the monomer. The bulk copolymerization of TMVS (M1) and vinyl acetate (M2) at 120 °C gave the following copolymerization parameters: rl = 1.4, r2 = 0.24, Q1 = 0.084, and e1 = +0.80. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5864–5871, 2005  相似文献   

17.
In this work, the successful application of atom transfer radical polymerization (ATRP) to cardanyl acrylate, a polymerizable monomer derived from a renewable resource cardanol, is reported. Polycardanyl acrylate and poly(methylmethacrylate)‐cardanyl acrylate copolymers were prepared in bulk ATRP, using Copper(I) bromide/N, N, N′, N′, N″‐pentamethyl diethylene triamine (PMDETA) catalyst system at 95 °C in combination with ethyl‐2‐bromo isobutyrate initiator. The copolymers had mol. wt. (Mn) in the range 8300–2400 g/mol and polydispersity index (PDI) 1.27–2.00, depending upon the [M]0/[I]0 ratio. 1H NMR analysis of the copolymer showed that unsaturation in the side chain of cardanyl acrylate is unaffected under the conditions of ATRP. This was further confirmed by studying the curing reaction of polycardanyl acrylate by supported dynamic mechanical thermal analysis (DMTA) in dual cantilever mode. The thermogravimetric analysis shows that the copolymers have improved thermal stability, by about 35 °C, in comparison with pure PMMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5953–5961, 2005  相似文献   

18.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

19.
The dynamic‐mechanical properties of different mixtures formed by an epoxy resin (DGEBA type) and a phenolic resin (resole type) cured by trietylenetetramine and/or p‐toluensulphonic acid at different concentrations have been studied by means of dynamic mechanical thermal analysis (DMTA). All samples were cured by pressing at 90 °C during 6 h. The mechanical studies were performed between ?100 to 300 °C at a heating rate of 2 °C/min. This study was also carried out for the epoxy‐TETA and phenolic‐p‐toluensulphonic acid systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1548–1555, 2005  相似文献   

20.
Metallocene polyethylene (mPE) fractions are recognized as being more homogeneous with respect to short‐chain branch (SCB) distribution as compared with unfractionated mPEs. Differential scanning calorimetry and polarized optical microscopy (POM) were used to study the influences of SCB content on the crystallization kinetics, melting behavior, and crystal morphology of four butyl‐branched mPE fractions. The parent mPE of the studied fractions was also investigated for comparative purposes. mPE fractions showed a much simpler crystallization behavior as compared with their parent mPE during the cooling experiments. The Ozawa equation was successfully used to analyze the nonisothermal crystallization kinetics of the fractions. The Ozawa exponent n decreased from about 3.5 to 2 as the temperature declined for each fraction, indicating the crystal‐growth geometry changed from three‐dimensional to two‐dimensional. For isothermal crystallization, the fraction with a lesser SCB content exhibited a higher crystallization temperature (Tc) window. The results from the Avrami equation analysis showed the exponent n values were around 3 (with minor variation), which implied that the crystal‐growth geometry is pseudo‐three‐dimensional. Both of the activation energies for nonisothermal and isothermal crystallization were determined for each fraction with Kissinger and Arrhenius‐type equations, respectively. Double melting peaks were observed for both nonisothermally or isothermally crystallized specimens. The high‐melting peak was confirmed induced via the annealing effect during heating scans. The Hoffman–Weeks plot was inapplicable in obtaining the equilibrium melting temperature (Tm°) for each fraction. The relationship between Tc and Tm for the fractions is approximately Tm = Tc (°C) + 8.3. The POM results indicated that the crystals of parent or fractions formed under cooling conditions did not exhibit the typical spherulitic morphology as a result of the high SCB content. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 325–337, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号